FREE BOOKS

Author's List




PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  
Thus an abstractive set is effectively the entity meant when we consider an instant of time without temporal extension. It subserves all the necessary purposes of giving a definite meaning to the concept of the properties of nature at an instant. I fully agree that this concept is fundamental in the expression of physical science. The difficulty is to express our meaning in terms of the immediate deliverances of sense-awareness, and I offer the above explanation as a complete solution of the problem. In this explanation a moment is the set of natural properties reached by a route of approximation. An abstractive series is a route of approximation. There are different routes of approximation to the same limiting set of the properties of nature. In other words there are different abstractive sets which are to be regarded as routes of approximation to the same moment. Accordingly there is a certain amount of technical detail necessary in explaining the relations of such abstractive sets with the same convergence and in guarding against possible exceptional cases. Such details are not suitable for exposition in these lectures, and I have dealt with them fully elsewhere[5]. [5] Cf. _An Enquiry concerning the Principles of Natural Knowledge_, Cambridge University Press, 1919. It is more convenient for technical purposes to look on a moment as being the class of all abstractive sets of durations with the same convergence. With this definition (provided that we can successfully explain what we mean by the 'same convergence' apart from a detailed knowledge of the set of natural properties arrived at by approximation) a moment is merely a class of sets of durations whose relations of extension in respect to each other have certain definite peculiarities. We may term these connexions of the component durations the 'extrinsic' properties of a moment; the 'intrinsic' properties of the moment are the properties of nature arrived at as a limit as we proceed along any one of its abstractive sets. These are the properties of nature 'at that moment,' or 'at that instant.' The durations which enter into the composition of a moment all belong to one family. Thus there is one family of moments corresponding to one family of durations. Also if we take two moments of the same family, among the durations which enter into the composition of one moment the smaller durations are completely separated from the smaller durations which enter
PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  



Top keywords:

moment

 

durations

 
properties
 

abstractive

 

approximation

 

nature

 

family

 
instant
 

convergence

 

routes


smaller

 

natural

 

arrived

 
technical
 
relations
 

explanation

 

moments

 
composition
 

extension

 

concept


meaning
 

purposes

 
definite
 

explain

 

successfully

 

University

 

Cambridge

 

convenient

 

definition

 
provided

knowledge

 

completely

 

proceed

 
Knowledge
 

intrinsic

 
component
 
connexions
 

belong

 

extrinsic

 
respect

separated

 
peculiarities
 
detailed
 

detail

 

deliverances

 

difficulty

 

express

 
awareness
 
solution
 

problem