FREE BOOKS

Author's List




PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  
raight lines. Gravity, he knows, will not turn a corner, but exerts its pull along a right line; hence his aim and effort to ascertain whether electric action ever takes place in curved lines. This once proved, it would follow that the action is carried on by means of a medium surrounding the electrified bodies. His experiments in 1837 reduced, in his opinion, this point of demonstration. He then found that he could electrify, by induction, an insulated sphere placed completely in the shadow of a body which screened it from direct action. He pictured the lines of electric force bending round the edges of the screen, and reuniting on the other side of it; and he proved that in many cases the augmentation of the distance between his insulated sphere and the inducing body, instead of lessening, increased the charge of the sphere. This he ascribed to the coalescence of the lines of electric force at some distance behind the screen. Faraday's theoretic views on this subject have not received general acceptance, but they drove him to experiment, and experiment with him was always prolific of results. By suitable arrangements he placed a metallic sphere in the middle of a large hollow sphere, leaving a space of something more than half an inch between them. The interior sphere was insulated, the external one uninsulated. To the former he communicated a definite charge of electricity. It acted by induction upon the concave surface of the latter, and he examined how this act of induction was effected by placing insulators of various kinds between the two spheres. He tried gases, liquids, and solids, but the solids alone gave him positive results. He constructed two instruments of the foregoing description, equal in size and similar in form. The interior sphere of each communicated with the external air by a brass stem ending in a knob. The apparatus was virtually a Leyden jar, the two coatings of which were the two spheres, with a thick and variable insulator between them. The amount of charge in each jar was determined by bringing a proof-plane into contact with its knob and measuring by a torsion balance the charge taken away. He first charged one of his instruments, and then dividing the charge with the other, found that when air intervened in both cases the charge was equally divided. But when shellac, sulphur, or spermaceti was interposed between the two spheres of one jar, while air occupied this interval in the other, the
PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  



Top keywords:

sphere

 

charge

 

spheres

 

insulated

 

induction

 

electric

 

action

 

experiment

 

results

 

screen


solids

 

distance

 

interior

 

proved

 

instruments

 

communicated

 

external

 

liquids

 
spermaceti
 

examined


definite

 
electricity
 

interval

 

occupied

 

uninsulated

 

effected

 

placing

 

positive

 

interposed

 
concave

surface
 

insulators

 

amount

 

determined

 
bringing
 
insulator
 
variable
 

coatings

 
dividing
 

balance


torsion

 

measuring

 

charged

 

contact

 

intervened

 

similar

 

shellac

 

constructed

 

foregoing

 

description