FREE BOOKS

Author's List




PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  
body placed in the liquid, or acting on it, which confers upon it the property of viscosity; the hand would no longer move freely. During its motion, but then only, resistance would be encountered and overcome. Here we have rudely represented the case of the excited magnetic field, and the result in both cases would be substantially the same. In both cases heat would, in the end, be generated outside of the muscle, its amount being exactly equivalent to the resistance overcome. Let us push the analogy a little further; suppose in the case of the fluid rendered viscous, as assumed a moment ago, the viscosity not to be so great as to prevent the formation of ripples when the hand is passed through the liquid. Then the motion of the hand, before its final conversion into heat, would exist for a time as wave-motion, which, on subsiding, would generate its due equivalent of heat. This intermediate stage, in the case of our moving wire, is represented by the period during which the electric current is flowing through it; but that current, like the ripples of our liquid, soon subsides, being, like them, converted into heat. Do these words shadow forth anything like the reality? Such speculations cannot be injurious if they are enunciated without dogmatism. I do confess that ideas such as these here indicated exercise a strong fascination on my mind. Is then the magnetic field really viscous, and if so, what substance exists in it and the wire to produce the viscosity? Let us first look at the proved effects, and afterwards turn our thoughts back upon their cause. When the wire approaches the magnet, an action is evoked within it, which travels through it with a velocity comparable to that of light. One substance only in the universe has been hitherto proved competent to transmit power at this velocity; the luminiferous ether. Not only its rapidity of progression, but its ability to produce the motion of light and heat, indicates that the electric current is also motion.[1] Further, there is a striking resemblance between the action of good and bad conductors as regards electricity, and the action of diathermanous and adiathermanous bodies as regards radiant heat. The good conductor is diathermanous to the electric current; it allows free transmission without the development of heat. The bad conductor is adiathermanous to the electric current, and hence the passage of the latter is accompanied by the development of heat. I
PREV.   NEXT  
|<   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  



Top keywords:

motion

 

current

 

electric

 
viscosity
 
liquid
 

action

 

proved

 

substance

 
equivalent
 

produce


viscous
 

ripples

 

resistance

 

overcome

 

conductor

 

development

 

diathermanous

 

velocity

 
magnetic
 

represented


adiathermanous

 

approaches

 

thoughts

 

exercise

 

strong

 

fascination

 

effects

 

exists

 

magnet

 

competent


striking

 

resemblance

 
conductors
 

Further

 

electricity

 

bodies

 

passage

 
accompanied
 
transmission
 

radiant


ability

 
progression
 

universe

 

comparable

 
evoked
 
travels
 

hitherto

 

rapidity

 

luminiferous

 

confess