FREE BOOKS

Author's List




PREV.   NEXT  
|<   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171  
172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   >>   >|  
f light passes through a refracting surface, especially if imperfectly polished, a portion of it is irregularly scattered, and makes the surface visible in all directions, but most conspicuously in directions not far distant from that of the light itself; and if a reflecting surface be placed parallel to the refracting surface, this scattered light, as well as the principal beam, will be reflected, and there will be also a new dissipation of light, at the return of the beam through the refracting surface. These two portions of scattered light will coincide in direction; and if the surfaces be of such a form as to collect the similar effects, will exhibit rings of colors. The interval of retardation is here the difference between the paths of the principal beam and of the scattered light between the two surfaces; of course, wherever the inclination of the scattered light is equal to that of the beam, although in different planes, the interval will vanish and all the undulations will conspire. At other inclinations, the interval will be the difference of the secants from the secant of the inclination, or angle of refraction of the principal beam. From these causes, all the colors of concave mirrors observed by Newton and others are necessary consequences; and it appears that their production, though somewhat similar, is by no means as Newton imagined, identical with the production of thin plates."(2) By following up this clew with mathematical precision, measuring the exact thickness of the plate and the space between the different rings of color, Young was able to show mathematically what must be the length of pulsation for each of the different colors of the spectrum. He estimated that the undulations of red light, at the extreme lower end of the visible spectrum, must number about thirty-seven thousand six hundred and forty to the inch, and pass any given spot at a rate of four hundred and sixty-three millions of millions of undulations in a second, while the extreme violet numbers fifty-nine thousand seven hundred and fifty undulations to the inch, or seven hundred and thirty-five millions of millions to the second. The Colors of Striated Surfaces Young similarly examined the colors that are produced by scratches on a smooth surface, in particular testing the light from "Mr. Coventry's exquisite micrometers," which consist of lines scratched on glass at measured intervals. These microscopic tests brought the
PREV.   NEXT  
|<   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171  
172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   >>   >|  



Top keywords:

surface

 

scattered

 

hundred

 

undulations

 
millions
 

colors

 

interval

 

principal

 

refracting

 

extreme


similar

 

surfaces

 

Newton

 

difference

 

thousand

 

inclination

 

thirty

 

spectrum

 

directions

 

visible


production
 

thickness

 

passes

 

mathematically

 

estimated

 

number

 

pulsation

 

length

 

exquisite

 

micrometers


Coventry

 

smooth

 

testing

 

consist

 

microscopic

 

brought

 

intervals

 

measured

 
scratched
 

scratches


produced

 
measuring
 
violet
 
numbers
 
Surfaces
 
similarly
 
examined
 

Striated

 

Colors

 

identical