FREE BOOKS

Author's List




PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  
ordinary magnetic needle so that it is parallel to it. The magnetic needle will be set in motion and will deviate towards the west under that part of the conductor which comes from the negative pole of the galvanic battery. If the wire is not more than four-fifths of an inch distant from the middle of this needle, this deviation will be about forty-five degrees. At a greater distance the angle of deviation becomes less. Moreover, the deviation varies according to the strength of the battery. The conductor can be moved towards the east or west, so long as it remains parallel to the needle, without producing any other result than to make the deviation smaller. "The conductor can consist of several combined wires or metal coils. The nature of the metal does not alter the result except, perhaps, to make it greater or less. We have used wires of platinum, gold, silver, brass, and iron, and coils of lead, tin, and quicksilver with the same result. If the conductor is interrupted by water, all effect is not cut off, unless the stretch of water is several inches long. "The conductor works on the magnetic needle through glass, metals, wood, water, and resin, through clay vessels and through stone, for when we placed a glass plate, a metal plate, or a board between the conductor and the needle the effect was not cut off; even the three together seemed hardly to weaken the effect, and the same was the case with an earthen vessel, even when it was full of water. Our experiments also demonstrated that the said effects were not altered when we used a magnetic needle which was in a brass case full of water. "When the conductor is placed in a horizontal plane under the magnetic needle all the effects we have described take place in precisely the same way, but in the opposite direction to what took place when the conductor was in a horizontal plane above the needle. "If the conductor is moved in a horizontal plane so that it gradually makes ever-increasing angles with the magnetic meridian, the deviation of the magnetic needle from the magnetic meridian is increased when the wire is turned towards the place of the needle; it decreases, on the other hand, when it is turned away from that place. "A needle of brass which is hung in the same way as the magnetic needle is not set in motion by the influence of the conductor. A needle of glass or rubber likewise remains static under similar experiments. Hence the electrical conductor
PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  



Top keywords:

needle

 

conductor

 

magnetic

 

deviation

 
effect
 

result

 

horizontal

 

experiments

 

effects

 

remains


battery

 

parallel

 

motion

 

meridian

 

greater

 

turned

 

weaken

 

earthen

 

vessel

 

opposite


decreases
 

increased

 

increasing

 

angles

 

influence

 

electrical

 

similar

 

static

 

rubber

 

likewise


altered

 

precisely

 

gradually

 

direction

 

demonstrated

 

platinum

 

distance

 

degrees

 
Moreover
 

strength


varies

 
middle
 
negative
 
deviate
 
ordinary
 
galvanic
 
distant
 

fifths

 

producing

 

stretch