FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  
cannot define these changes. Science describes chroma as the purity of one wave length separated from all others. Other wave lengths, INTERMINGLING, make its chroma less pure. A beam of daylight can combine all wave lengths in such balance as to give the sensation of whiteness, because no single wave is in excess.[8] [Footnote 8: See definition of White in Glossary.] (24) The color sphere (see Fig. 1) is a convenient model to illustrate these three qualities,--hue, value, and chroma,--and unite them by measured scales. (25) The north pole of the color sphere is white, and the south pole black. Value or luminosity of colors ranges between these two extremes. This is the vertical scale, to be memorized as _V_, the initial for both value and vertical. Vertical movement through color may thus be thought of as a change of value, but not as a change of hue or of chroma. Hues of color are spread around the equator of the sphere. This is a horizontal scale, memorized as _H_, the initial for both hue and horizontal. Horizontal movement around the color solid is thus thought of as a change of hue, but not of value or of chroma. A line inward from the strong surface hues to the neutral gray axis, traces the graying of each color, which is loss of chroma, and conversely a line beginning with neutral gray at the vertical axis, and becoming more and more colored until it passes outside the sphere, is a scale of chroma, which is memorized as _C_, the initial both for chroma and centre. Thus the sphere lends its three dimensions to color description, and a color applied anywhere within, without, or on its surface is located and named by its degree of hue, of value, and of chroma. [Illustration: Fig. 1.] +HUES first appeal to the child, VALUES next, and CHROMAS last.+ (26) Color education begins with ability to recognize and name certain hues, such as red, yellow, green, blue, and purple (see paragraphs 182 and 183). Nature presents these hues in union with such varieties of value and chroma that, unless there be some standard of comparison, it is impossible for one person to describe them intelligently to another. (27) The solar spectrum forms a basis for scientific color analysis, taught in technical schools; but it is quite beyond the comprehension of a child. He needs something more tangible and constantly in view to train his color notions. He needs to handle colors, place them side by side for comparison,
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  



Top keywords:

chroma

 

sphere

 

initial

 

change

 

memorized

 

vertical

 

movement

 

lengths

 

thought

 
colors

neutral
 

surface

 

horizontal

 
comparison
 

appeal

 

taught

 
describe
 

notions

 
intelligently
 

CHROMAS


spectrum
 

VALUES

 

Illustration

 

applied

 

scientific

 

dimensions

 

description

 

handle

 

degree

 

located


education

 

Nature

 

paragraphs

 
purple
 

presents

 

comprehension

 

varieties

 
yellow
 

ability

 
standard

begins
 
person
 

impossible

 

constantly

 

recognize

 

analysis

 

tangible

 

technical

 
schools
 

equator