FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  
s as great as in the latter, and the lifting power would necessarily be much greater. Thus, though both machines have planes of the same area, each plane having a surface of 144 square feet, yet there is a great difference in the "lift" of the two. But it is not to be concluded that the back portion of a plane is altogether wasted. Numerous experiments have taught aeroplane constructors that if the plane were slightly curved from front to back the rear portion of the plane also exercised a "lift"; thus, instead of the air being simply cut by the entering edge of the plane, it is driven against the arched back of the plane, and helps to lift the machine into the air, and support it when in flight. There is also a secondary lifting impulse derived from this simple curve. We have seen that the air which has been cut by the front edge of the plane pushes up from below, and is arrested by the top of the arch, but the downward dip of the rear portion of the plane is of service in actually DRAWING THE AIR FROM ABOVE. The rapid air stream which has been cut by the entering edge passes above the top of the curve, and "sucks up", as it were, so that the whole wing is pulled upwards. Thus there are two lifting impulses: one pushing up from below, the other sucking up from above. It naturally follows that when the camber is very pronounced the machine will fly much slower, but will bear a greater weight than a machine equipped with planes having little or no camber. On high-speed machines, which are used chiefly for racing purposes, the planes have very little camber. This was particularly noticeable in the monoplane piloted by Mr. Hamel in the Aerial Derby of 1913: the wings of this machine seemed to be quite flat, and it was chiefly because of this that the pilot was able to maintain such marvellous speed. The scientific study of the wing lift of planes has proceeded so far that the actual "lift" can now be measured, providing the speed of the machine is known, together with the superficial area of the planes. The designer can calculate what weight each square foot of the planes will support in the air. Thus some machines have a "lift" of 9 or 10 pounds to each square foot of wing surface, while others are reduced to 3 or 4 pounds per square foot. CHAPTER XXV. The Wright Biplane (Cont.) The under part of the frame of the Wright biplane, technically known as the CHASSIS, resembled a pair of long "runner" skates, s
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  



Top keywords:

planes

 

machine

 

square

 

portion

 

camber

 

machines

 
lifting
 

entering

 

greater

 

support


weight
 

chiefly

 

Wright

 

surface

 

pounds

 

monoplane

 

biplane

 

noticeable

 
Aerial
 

CHAPTER


piloted

 
racing
 

Biplane

 

skates

 

purposes

 
runner
 

measured

 
providing
 

actual

 

CHASSIS


superficial

 

calculate

 

designer

 

technically

 

proceeded

 

maintain

 

resembled

 
scientific
 

reduced

 

marvellous


exercised
 
curved
 

slightly

 
aeroplane
 
constructors
 
simply
 

flight

 

arched

 

driven

 

taught