FREE BOOKS

Author's List




PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   >>  
atmospheric pressure due to change of weather or due to alteration of altitude. If we take a mercury barometer up a hill we will observe that the mercury falls. The weight of atmosphere being less as we ascend, the column of mercury supported becomes smaller. Although the atmosphere has been proved to be over 200 miles high, it has by no means the same density throughout. Like all gases, air is subject to the law that the density increases directly as the pressure, and thus the densest and heaviest layers are those nearest the sea-level, because the air near the earth's surface has to support the pressure of all the air above it. As airmen rise into the highest portions of the atmosphere the height of the column of air above them decreases, and it follows that, having a shorter column of air to support, those portions are less dense than those lower down. So rare does the atmosphere become, when great altitudes are reached, that at a height of seven miles breathing is well-nigh impossible, and at far lower altitudes than this airmen have to be supported by inhalations of oxygen. One of the greatest altitudes was reached by two famous balloonists, Messrs. Coxwell and Glaisher. They were over seven miles in the air when the latter fell unconscious, and the plucky aeronauts were only saved by Mr. Coxwell pulling the valve line with his teeth, as all his limbs were disabled. CHAPTER XLI. How an Airman Knows what Height he Reaches One of the first questions the visitor to an aerodrome, when watching the altitude tests, asks is: "How is it known that the airman has risen to a height of so many feet?" Does he guess at the distance he is above the earth? If this were so, then it is very evident that there would be great difficulty in awarding a prize to a number of competitors each trying to ascend higher than his rivals. No; the pilot does not guess at his flying height, but he finds it by a height-recording instrument called the BAROGRAPH. In the last chapter we saw how the ordinary mercurial barometer can be used to ascertain fairly accurately the height of mountains. But the airman does not take a mercurial barometer up with him. There is for his use another form of barometer much more suited to his purpose, namely, the barograph, which is really a development of the aneroid barometer. The aneroid barometer (Gr. a, not; neros, moist) is so called because it requires neither mercury, glycerine, water,
PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   >>  



Top keywords:

barometer

 
height
 
atmosphere
 

mercury

 
pressure
 
altitudes
 
column
 

support

 

Coxwell

 

mercurial


aneroid
 

airmen

 

reached

 

airman

 
portions
 
called
 

supported

 

altitude

 

density

 
ascend

difficulty
 

evident

 

distance

 

awarding

 
rivals
 

higher

 

number

 
competitors
 

questions

 
visitor

Reaches
 

Height

 

glycerine

 

aerodrome

 

watching

 
alteration
 

requires

 

weather

 

flying

 
mountains

fairly

 

accurately

 

development

 

barograph

 
purpose
 

suited

 

ascertain

 
instrument
 

change

 

recording