FREE BOOKS

Author's List




PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  
t all the heat generated and apply it to this purpose. But if we express this quantity of heat in its mechanical equivalent, and suppose that we could get the corresponding quantity of work out of our pound of coal, we should be grievously mistaken. For in the first place, we could not collect all the heat given out, because a great deal is communicated to the products of combustion by which it is absorbed, and locked up in a form that renders it incapable of measurement by our thermometers. In the next place, if we make an allowance for the quantity of heat which thus disappears, even then the corrected calorific power converted into its mechanical equivalent would not express the quantity of work practically obtainable from the coal. In the most perfectly constructed engine the whole amount of heat generated by the combustion of the coal is not available for heating the boiler--a certain quantity is lost by radiation, by heating the material of the furnace, &c., by being carried away by the products of combustion and in other ways. Moreover, some of the coal escapes combustion by being allowed to go away as smoke, or by remaining as cinders. Then again, in the engine itself a good deal of heat is lost through various channels, and much of the working power is frittered away through friction, which reconverts the mechanical power into its equivalent in heat, only this heat is not available for further work, and is thus lost so far as the efficiency of the engine is concerned. These sources of loss are for the most part unavoidable, and are incidental to the necessary imperfections of our mechanism. But even with the most perfectly conceivable constructed engine it has been proved that we can only expect one-sixth of the total energy of the fuel to appear in the form of work, and in a very good steam-engine of the present time we only realize in the form of useful work about one-tenth of the whole quantity of energy contained in the coal. Although steam power is one of the most useful agencies that science has placed at the disposal of man, it is not generally recognized by the uninitiated how wasteful we are of Nature's resources. One of the greatest problems of applied science yet to be solved is the conversion of the energy latent in coal or other fuel into a quantity of useful work approximating to the mechanical equivalent much more closely than has hitherto been accomplished. But although we only get this small
PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  



Top keywords:

quantity

 

engine

 

combustion

 

mechanical

 
equivalent
 
energy
 

perfectly

 

science

 

constructed

 

heating


products

 

express

 

generated

 

realize

 

purpose

 

present

 

proved

 
incidental
 

unavoidable

 

sources


imperfections
 
mechanism
 

suppose

 

conceivable

 

expect

 

Although

 

solved

 
conversion
 

latent

 

applied


greatest

 
problems
 

approximating

 
accomplished
 

hitherto

 

closely

 
resources
 
disposal
 

agencies

 

generally


Nature

 

wasteful

 

recognized

 

uninitiated

 

contained

 

obtainable

 
practically
 

collect

 
radiation
 

boiler