FREE BOOKS

Author's List




PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  
arbon combines with atmospheric oxygen, and restores some of the energy that was stored up at that remote period. But the whole of the energy dormant in coal is not due to the carbon, for this fuel contains another combustible element, hydrogen, which is also a gas when in the free state, and which is one of the constituents of water, the other constituent being oxygen. In fact, there is more latent energy in hydrogen, weight for weight, than there is in carbon, for one pound of hydrogen on complete combustion would give enough heat to raise 62,032 lbs. of water through 1 deg. F. Hydrogen in burning combines with oxygen to form water, so that the products of the complete combustion of coal are carbon dioxide and water. The amount of heat contributed by the hydrogen of coal is, however, comparatively insignificant, because there is only a small percentage of this element present, and we thus come to the conclusion that nearly all the work that is done by our steam-engines of the present time is drawn from the latent energy of the carbon of the fossilized vegetation of the Carboniferous period. The conclusion to which we have now been led leaves us with the question as to the _origin_ of the energy of coal still unanswered. We shall have to go a step further before this part of our story is complete, and we must form some kind of idea of the way in which a plant grows. Carbon being the chief source of energy in coal, we may for the present confine ourselves to this element, of which woody fibre contains about 50 per cent. Consider the enormous gain in weight during the growth of a plant; compare the acorn, weighing a few grains, with the oak, weighing many tons, which arises from it after centuries of growth. If matter is indestructible, and never comes into existence spontaneously, where does all this carbon come from? It is a matter of common knowledge that the carbon of plants is supplied by the atmosphere in the form of carbon dioxide--the gas which has already been referred to as resulting from the combustion of carbon. This gas exists in the atmosphere in small quantity--about four volumes in 10,000 volumes of air; but insignificant as this may appear, it is all important for the life of plants, since it is from this source that they derive their carbon. The origin of the carbon dioxide, which is present as a normal constituent of the atmosphere, does not directly concern us at present, but it is important to bear
PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  



Top keywords:
carbon
 

energy

 

present

 

hydrogen

 
atmosphere
 
combustion
 

weight

 

element

 

oxygen

 
dioxide

complete

 

conclusion

 

insignificant

 

growth

 

weighing

 

matter

 

source

 

volumes

 

important

 
origin

plants
 

combines

 

constituent

 

period

 

latent

 

stored

 

indestructible

 

grains

 

centuries

 
arises

remote

 
confine
 
Carbon
 

compare

 
enormous
 
Consider
 
spontaneously
 

atmospheric

 
directly
 

concern


normal

 
derive
 

quantity

 

exists

 

common

 

existence

 

knowledge

 

supplied

 

resulting

 

referred