FREE BOOKS

Author's List




PREV.   NEXT  
|<   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192  
193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   >>   >|  
so that water for public use will not run short; for people will be unable to divert it if they have only their own supplies from headquarters. This is the reason why I have made these divisions, and also in order that individuals who take water into their houses may by their taxes help to maintain the conducting of the water by the contractors. 3. If, however, there are hills between the city and the source of supply, subterranean channels must be dug, and brought to a level at the gradient mentioned above. If the bed is of tufa or other stone, let the channel be cut in it; but if it is of earth or sand, there must be vaulted masonry walls for the channel, and the water should thus be conducted, with shafts built at every two hundred and forty feet. 4. But if the water is to be conducted in lead pipes, first build a reservoir at the source; then, let the pipes have an interior area corresponding to the amount of water, and lay these pipes from this reservoir to the reservoir which is inside the city walls. The pipes should be cast in lengths of at least ten feet. If they are hundreds, they should weigh 1200 pounds each length; if eighties, 960 pounds; if fifties, 600 pounds; forties, 480 pounds; thirties, 360 pounds; twenties, 240 pounds; fifteens, 180 pounds; tens, 120 pounds; eights, 100 pounds; fives, 60 pounds. The pipes get the names of their sizes from the width of the plates, taken in digits, before they are rolled into tubes. Thus, when a pipe is made from a plate fifty digits in width, it will be called a "fifty," and so on with the rest. 5. The conducting of the water through lead pipes is to be managed as follows. If there is a regular fall from the source to the city, without any intervening hills that are high enough to interrupt it, but with depressions in it, then we must build substructures to bring it up to the level as in the case of channels and conduits. If the distance round such depressions is not great, the water may be carried round circuitously; but if the valleys are extensive, the course will be directed down their slope. On reaching the bottom, a low substructure is built so that the level there may continue as long as possible. This will form the "venter," termed [Greek: Koilia] by the Greeks. Then, on reaching the hill on the opposite side, the length of the venter makes the water slow in swelling up to rise to the top of the hill. 6. But if there is no such venter made in the vall
PREV.   NEXT  
|<   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192  
193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   >>   >|  



Top keywords:

pounds

 

venter

 
reservoir
 

source

 

channel

 

depressions

 

conducted

 
length
 

digits

 

channels


reaching

 

conducting

 

called

 
regular
 
continue
 

Koilia

 

substructure

 
managed
 

eights

 

plates


rolled
 

bottom

 
carried
 

distance

 

conduits

 

circuitously

 

extensive

 

valleys

 

opposite

 
swelling

intervening

 

directed

 

Greeks

 
interrupt
 

substructures

 
termed
 
supply
 

contractors

 

maintain

 
houses

subterranean

 
brought
 
gradient
 

mentioned

 

unable

 

divert

 

people

 
public
 
supplies
 

individuals