FREE BOOKS

Author's List




PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  
turned his attention to the improvement of the reflecting telescope and devised a form of that instrument which still goes under his name. And even after Chester More Hall in 1729, and John Dollond in 1757, had shown that chromatic aberration could be nearly eliminated by the combination of a flint-glass lens with one of crown glass, William Herschel, who began his observations in 1774, devoted his skill entirely to the making of reflectors, seeing no prospect of much advance in the power of refractors. A refracting telescope which has been freed from the effects of chromatic aberration is called achromatic. The principle upon which its construction depends is that by combining lenses of different dispersive power the separation of the spectral colors in the image can be corrected while the convergence of the rays of light toward a focus is not destroyed. Flint glass effects a greater dispersion than crown glass nearly in the ratio of three to two. The chromatic combination consists of a convex lens of crown backed by a concave, or plano-concave, lens of flint. When these two lenses are made of focal lengths which are directly proportional to their dispersions, they give a practically colorless image at their common focus. The skill of the telescope-maker and the excellence of his work depend upon the selection of the glasses to be combined and his manipulation of the curves of the lenses. [Illustration: ACHROMATIC OBJECT GLASS. _a_, crown glass; _b_, flint glass.] Now, the reader may ask, "Since reflectors require no correction for color dispersion, while that correction is only approximately effected by the combination of two kinds of lenses and two kinds of glass in a refractor, why is not the reflector preferable to the refractor?" The answer is, that the refractor gives more light and better definition. It is superior in the first respect because a lens transmits more light than a mirror reflects. Professor Young has remarked that about eighty-two per cent of the light reaches the eye in a good refractor, while "in a Newtonian reflector, in average condition, the percentage seldom exceeds fifty per cent, and more frequently is lower than higher." The superiority of the refractor in regard to definition arises from the fact that any distortion at the surface of a mirror affects the direction of a ray of light three times as much as the same distortion would do at the surface of a lens. And this applies eq
PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  



Top keywords:

refractor

 
lenses
 

chromatic

 
combination
 

telescope

 

reflectors

 
dispersion
 

correction

 

mirror

 

definition


reflector

 
effects
 

surface

 

aberration

 

concave

 

distortion

 

depend

 
require
 

Illustration

 

reader


OBJECT

 

ACHROMATIC

 

excellence

 

selection

 

combined

 
preferable
 
manipulation
 

curves

 
glasses
 

approximately


effected
 

Professor

 

superiority

 

regard

 
arises
 

higher

 

exceeds

 

frequently

 
affects
 

applies


direction

 
seldom
 

percentage

 

respect

 

transmits

 
reflects
 

superior

 
Newtonian
 

average

 

condition