FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
ch an eyepiece is achromatic. It is therefore generally preferred for mere seeing purposes. In the Ramsden eyepiece two plano-convex lenses are also used, but they are of equal focal length, are placed at a distance apart equal to two thirds of the focal length of either, and have their convex sides facing one another. With such an eyepiece the image viewed is beyond the farther or field lens instead of between the two lenses, and as this fact renders it easier to adjust wires or lines for measuring purposes in the focus of the eyepiece, the Ramsden construction is used when a micrometer is to be employed. In order to ascertain the magnifying power which an eyepiece gives when applied to a telescope it is necessary to know the equivalent, or combined, focal length of the two lenses. Two simple rules, easily remembered, supply the means of ascertaining this. The equivalent focal length of a negative or Huygens eyepiece is equal to half the focal length of the larger or field lens. The equivalent focal length of a positive or Ramsden eyepiece is equal to three fourths of the focal length of either of the lenses. Having ascertained the equivalent focal length of the eyepiece, it is only necessary to divide it into the focal length of the object glass (or mirror) in order to know the magnifying power of your telescope when that particular eyepiece is in use. [Illustration: NEGATIVE EYEPIECE.] [Illustration: POSITIVE EYEPIECE.] A first-class object glass (or mirror) will bear a magnifying power of one hundred to the inch of aperture when the air is in good condition--that is, if you are looking at stars. If you are viewing the moon, or a planet, better results will always be obtained with lower powers--say fifty to the inch at the most. And under ordinary atmospheric conditions a power of from fifty to seventy-five to the inch is far better for stars than a higher power. With a five-inch telescope that would mean from two hundred and fifty to three hundred and seventy-five diameters, and such powers should only be applied for the sake of separating very close double stars. As a general rule, the lowest power that will distinctly show what you desire to see gives the best results. The experienced observer never uses as high powers as the beginner does. The number of eyepieces purchased with a telescope should never be less than three--a very low power--say ten to the inch; a very high power, seventy-five or one hundred
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

length

 

eyepiece

 
hundred
 

equivalent

 

telescope

 

lenses

 

Ramsden

 
magnifying
 

powers

 

seventy


applied

 

Illustration

 

results

 
EYEPIECE
 
mirror
 

object

 

purposes

 
convex
 

conditions

 

atmospheric


ordinary
 

facing

 
distance
 

viewing

 

obtained

 

planet

 

thirds

 

higher

 

diameters

 
observer

experienced

 

beginner

 

purchased

 
number
 

eyepieces

 
desire
 
separating
 

double

 

distinctly

 
lowest

general

 
aperture
 
combined
 

generally

 

simple

 

ascertaining

 

supply

 
easily
 
remembered
 

preferred