FREE BOOKS

Author's List




PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  
the image. The same eyepieces will serve for either the reflector or the refractor. But in order that the magnification may be effective, and serve to reveal what could not be seen without it, the image itself must be as nearly perfect as possible; this requires that every ray of light that forms the image shall be brought to a point in the image precisely corresponding to that from which it emanates in the real object. In reflectors this is effected by giving a parabolic form to the concave surface of the mirror. In refractors there is a twofold difficulty to be overcome. In the first place, a lens with spherical surfaces does not bend all the rays that pass through it to a focus at precisely the same distance. The rays that pass near the outer edge of the lens have a shorter focus than that of the rays which pass near the center of the lens; this is called spherical aberration. A similar phenomenon occurs with a concave mirror whose surface is spherical. In that case, as we have seen, the difficulty is overcome by giving the mirror a parabolic instead of a spherical form. In an analogous way the spherical aberration of a lens can be corrected by altering its curves, but the second difficulty that arises with a lens is not so easily disposed of: this is what is called chromatic aberration. It is due to the fact that the rays belonging to different parts of the spectrum have different degrees of refrangibility, or, in other words, that they come to a focus at different distances from the lens; and this is independent of the form of the lens. The blue rays come to a focus first, then the yellow, and finally the red. It results from this scattering of the spectral rays along the axis of the lens that there is no single and exact focus where all meet, and that the image of a star, for instance, formed by an ordinary lens, even if the spherical aberration has been corrected, appears blurred and discolored. There is no such difficulty with a mirror, because there is in that case no refraction of the light, and consequently no splitting up of the elements of the spectrum. In order to get around the obstacle formed by chromatic aberration it is necessary to make the object glass of a refractor consist of two lenses, each composed of a different kind of glass. One of the most interesting facts in the history of the telescope is that Sir Isaac Newton could see no hope that chromatic aberration would be overcome, and accordingly
PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  



Top keywords:

aberration

 

spherical

 
difficulty
 

mirror

 

chromatic

 

overcome

 

refractor

 
surface
 

giving

 

parabolic


concave

 

spectrum

 

corrected

 
called
 
formed
 

precisely

 

object

 
lenses
 

single

 

instance


spectral
 

composed

 
distances
 

independent

 

interesting

 

ordinary

 

results

 

finally

 

yellow

 
scattering

refraction

 

Newton

 

obstacle

 
elements
 

history

 
splitting
 
telescope
 

appears

 

consist

 
blurred

discolored

 
brought
 
emanates
 

surfaces

 

twofold

 

refractors

 

reflectors

 
effected
 
requires
 

magnification