FREE BOOKS

Author's List




PREV.   NEXT  
|<   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116  
117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   >>   >|  
es of a book of this scope.[13] BUILDING STONE For building stones, the principal geologic features requiring attention are structure, durability, beauty, and coloring. The structures of a rock include jointing, sedimentary stratification, and secondary cleavage. Nearly all rocks are jointed. The joints may be open and conspicuous, or closed and almost imperceptible. The closed joints or incipient joints cause planes of weakness, known variously as rift, grain, etc., which largely determine the shapes of the blocks which may be extracted from a quarry. Where properly distributed, they may facilitate the quarrying of the stone. In other cases they may be injurious, in that they limit the size of the blocks which can be extracted and afford channels for weathering agents. Some rocks of otherwise good qualities are so cut by joints that they are useless for anything but crushed stone. The bedding planes or stratification of sedimentary rocks exercise influences similar to joints, and like joints may be useful or disadvantageous, depending on their spacing. The secondary cleavage of some rocks, notably slates, enables them to be split into flat slabs and thus makes them useful for certain purposes. Proper methods of extraction and use of a rock may minimize the disadvantageous effects of its structural features. The use of channelling machines instead of explosives means less shattering of the rock. By proper dressing of the surface the opening of small crevices may be avoided. Stratified rocks set on bed, so that the bedding planes are horizontal, last longer than if set on edge. The durability of a rock may depend on its perviousness to water which may enter along planes of bedding or incipient fracture planes, or along the minute pore spaces between the mineral particles. The water may cause disastrous chemical changes in the minerals and by its freezing and thawing may cause splitting. For this reason, the less pervious rocks have in general greater durability than the more pervious. Highly pervious rocks used in a dry position or in a dry climate will last longer than elsewhere. Durability is determined also by the different coefficients of expansion of the constituent minerals of the rock. Where the minerals are heterogeneous in this regard, differential stresses are more likely to be set up than where the minerals are homogeneous. Likewise a coarse-textured rock is in general less durable than a fine-te
PREV.   NEXT  
|<   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116  
117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   >>   >|  



Top keywords:
joints
 

planes

 

minerals

 

bedding

 

pervious

 

durability

 
blocks
 
extracted
 

general

 
disadvantageous

longer

 

closed

 
cleavage
 

features

 

incipient

 

stratification

 

sedimentary

 

secondary

 
fracture
 
building

depend

 

perviousness

 
disastrous
 
chemical
 

particles

 

mineral

 

spaces

 
minute
 

principal

 

proper


dressing

 

shattering

 

requiring

 

explosives

 
surface
 

opening

 
horizontal
 

geologic

 
stones
 

Stratified


crevices

 

avoided

 

freezing

 
regard
 

differential

 

stresses

 

heterogeneous

 

constituent

 

coefficients

 
expansion