FREE BOOKS

Author's List




PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   >>   >|  
us, the surface flow will receive and transmit the water into the mass only through the cracks and fissures in the rock. Pervious materials, such as sandstones, sands, gravels, and cracked or fissured rocks, induce seepage, retard runoff, and, if such deposits are underlaid with an impervious bed, provide underground storage which impounds water away from the conditions which permit evaporation, and hence tends to increase runoff and equalize flow. On the other hand, if such pervious deposits possess other outlets outside of the stream channel and drainage area, they may result in the withdrawal of more or less of the seepage waters entirely from the ultimate flow of the stream. Coarse sands and gravels will rapidly imbibe the rainfall into their structure. Fine and loose beds of sand also rapidly receive and transmit the rainfall unless the precipitation is exceedingly heavy under which conditions some of it may flow away on the surface. Many of the highly pervious indurated formations receive water slowly and require a considerable time of contact in order to receive and remove the maximum amount. In flat, pervious areas, rainfalls of a certain intensity are frequently essential to the production of any resulting stream flow. In a certain Colorado drainage area, the drainage channel is normally dry except after a rainfall of one-half inch or more. A less rainfall, except under the condition of a previously saturated area, evaporates and sinks through the soil and into the deep lying pervious sand rock under the surface which transmits it beyond the drainage area. Such results are frequently greatly obscured by the interference of other factors, such as temperature, vegetation, etc. * * * * * The natural storage of any drainage area and the possibilities of artificial storage depend principally upon its topography and geology. Storage equalizes flow, although the withdrawal of precipitation by snow or ice storage in northern areas often reduces winter flow to the minimum for the year. Both surface and sub-surface storage sometimes hold the water from the streams at times when it might be advantageously used. Storage, while essential to regulation, is not always an advantage to immediate flow condit
PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   >>   >|  



Top keywords:
drainage
 

storage

 

surface

 

pervious

 

rainfall

 

receive

 
stream
 
rapidly
 

withdrawal

 
Storage

channel

 

precipitation

 
transmit
 

frequently

 

essential

 

conditions

 

seepage

 

runoff

 
deposits
 
gravels

vegetation

 

transmits

 
results
 
obscured
 

temperature

 

interference

 

factors

 
greatly
 

evaporates

 

advantage


condit

 

saturated

 

previously

 

condition

 
reduces
 

winter

 
northern
 

minimum

 
streams
 

equalizes


depend

 

principally

 

artificial

 
possibilities
 

natural

 

advantageously

 

topography

 

geology

 

regulation

 
remove