FREE BOOKS

Author's List




PREV.   NEXT  
|<   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89  
90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   >>   >|  
the volume of the gas. Another method which answers the same purpose is due to Langevin (_Ann. Chim. Phys._, 1903, 28, p. 289); it is as follows. Let A and B be two parallel planes immersed in a gas, and let a slab of the gas bounded by the planes a, b parallel to A and B be ionized by an instantaneous flash of Rontgen rays. If A and B are at different electric potentials, then all the positive ions produced by the rays will be attracted by the negative plate and all the negative ions by the positive, if the electric field were exceedingly large they would reach these plates before they had time to recombine, so that each plate would receive N0 ions if the flash of Rontgen rays produced N0 positive and N0 negative ions. With weaker fields the number of ions received by the plates will be less as some of them will recombine before they can reach the plates. We can find the number of ions which reach the plates in this case in the following way:--In consequence of the movement of the ions the slab of ionized gas will broaden out and will consist of three portions, one in which there are nothing but positive ions,--this is on the side of the negative plate,--another on the side of the positive plate in which there are nothing but negative ions, and a portion between these in which there are both positive and negative ions; it is in this layer that recombination takes place, and here if n is the number of positive or negative ions at the time t after the flash of Rontgen rays, n = n0/(1 + [alpha]n0t). With the same notation as before, the breadth of either of the outer layers will in time dt increase by X(k1 + k2)dt, and the number of ions in it by X(k1 + k2)ndt; these ions will reach the plate, the outer layers will receive fresh ions until the middle one disappears, which it will do after a time l/X(k1 + k2), where l is the thickness of the slab ab of ionized gas; hence N, the number of ions reaching either plate, is given by the equation _ / l/X(k1+k2) n0X(k1 + k2) X(k1 + k2) / n0[alpha]l \ N = | --------------dt = ---------- log( 1 + ---------- ). _/ 0 1 + n0[alpha]t [alpha] \ X(k1 + k2) / If Q is the charge received by the plate, X / Q0[epsilon]\ Q = Ne = -------------- log ( 1 + ----------- ), 4[pi][epsilon] \
PREV.   NEXT  
|<   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89  
90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   >>   >|  



Top keywords:
positive
 

negative

 
number
 

plates

 
Rontgen
 

ionized

 

layers

 
received
 

receive


recombine

 
parallel
 

electric

 

epsilon

 

planes

 

produced

 
reaching
 

thickness

 
purpose

charge
 

recombination

 

notation

 

middle

 

Another

 

method

 

equation

 

answers

 

disappears


volume

 

breadth

 

increase

 
exceedingly
 

instantaneous

 

bounded

 
immersed
 

attracted

 

potentials


broaden

 

movement

 
consequence
 
consist
 

portion

 

Langevin

 
portions
 

fields

 

weaker