FREE BOOKS

Author's List




PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100  
101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   >>   >|  
nt to the electrode where there is no ionization. A plate of metal will be as effectual as one made of a non-conductor, and thus we get the remarkable result that by interposing a plate of an excellent conductor like copper or silver between the electrode, we can entirely stop the current. This experiment can easily be tried by using a hot plate as the electrode at which the ionization takes place: then if the other electrode is cold the current which passes when the hot plate is cathode can be entirely stopped by interposing a cold metal plate between the electrodes. _Methods of counting the Number of Ions._--The detection of the ions and the estimation of their number in a given volume is much facilitated by the property they possess of promoting the condensation of water-drops in dust-free air supersaturated with water vapour. If such air contains no ions, then it requires about an eightfold supersaturation before any water-drops are formed; if, however, ions are present C. T. R. Wilson (_Phil. Trans._ 189, p. 265) has shown that a sixfold supersaturation is sufficient to cause the water vapour to condense round the ions and to fall down as raindrops. The absence of the drops when no ions are present is due to the curvature of the drop combined with the surface tension causing, as Lord Kelvin showed, the evaporation from a small drop to be exceeding rapid, so that even if a drop of water were formed the evaporation would be so great in its early stages that it would rapidly evaporate and disappear. It has been shown, however (J. J. Thomson, _Application of Dynamics to Physics and Chemistry_, p. 164; _Conduction of Electricity through Gases_, 2nd ed. p. 179), that if a drop of water is charged with electricity the effect of the charge is to diminish the evaporation; if the drop is below a certain size the effect the charge has in promoting condensation more than counterbalances the effect of the surface tension in promoting evaporation. Thus the electric charge protects the drop in the most critical period of its growth. The effect is easily shown experimentally by taking a bulb connected with a piston arranged so as to move with great rapidity. When the piston moves so as to increase the volume of the air contained in the bulb the air is cooled by expansion, and if it was saturated with water vapour before it is supersaturated after the expansion. By altering the throw of the piston the amount of s
PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100  
101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   >>   >|  



Top keywords:

electrode

 
evaporation
 
effect
 

promoting

 

vapour

 

piston

 

charge

 

expansion

 
condensation
 

volume


formed

 

tension

 

surface

 

present

 

supersaturation

 

supersaturated

 

current

 

easily

 

interposing

 

ionization


conductor
 

Conduction

 
Electricity
 

Chemistry

 

Dynamics

 

Physics

 

electricity

 

charged

 

Application

 

Thomson


effectual

 

exceeding

 

disappear

 
evaporate
 

stages

 

rapidly

 

diminish

 
increase
 

contained

 

cooled


rapidity

 

amount

 

altering

 

saturated

 

arranged

 

counterbalances

 

electric

 

protects

 

taking

 

connected