FREE BOOKS

Author's List




PREV.   NEXT  
|<   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108  
109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   >>   >|  
0, and moving towards the plane x = a. The particles starting from x = 0 describe cycloids, and the greatest distance they can get from the plane is equal to the diameter of the generating circle of the cycloid, i.e. to 2Xm/eH^2. (After reaching this distance they begin to approach the plane.) Hence if a is less than the diameter of the generating circle, all the particles starting from x = 0 will reach the plane x = a, if this is unlimited in extent; while if a is greater than the diameter of the generating circle none of the particles which start from x = 0 will reach the plane x = a. Thus, if x = 0 is a plane illuminated by ultra-violet light, and consequently the seat of a supply of negative ions, and x = a a plane connected with an electrometer, then if a definite electric intensity is established between the planes, i.e. if X be fixed, so that the rate of emission of negative ions from the illuminated plate is given, and if a is less than 2Xm/eH^2, all the ions which start from x = 0 will reach x = a. That is, the rate at which this plane receives an electric charge will be the same whether there is a magnetic field between the plate or not, but if a is greater than 2Xm/eH^2, then no particle which starts from the plate x = 0 will reach the plate x = a, and this plate will receive no charge. Thus the supply of electricity to the plate has been entirely stopped by the magnetic field. Thus, on this theory, if the distance between the plates is less than a certain value, the magnetic force should produce no effect on the rate at which the electrometer plate receives a charge, while if the distance is greater than this value the magnetic force would completely stop the supply of electricity to the plate. The actual phenomena are not so abrupt as this theory indicates. We find that when the plates are very near together the magnetic force produces a very slight effect, and this an increase in the rate of charging of the plate. On increasing the distance we come to a stage where the magnetic force produces a great diminution in the rate of charging. It does not, however, stop it abruptly, there being a considerable range of distance, in which the magnetic force diminishes but does not destroy the current. At still greater distances the current to the plate under the magnetic force is quite inappreciable compared with that when there is no magnetic for
PREV.   NEXT  
|<   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108  
109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   >>   >|  



Top keywords:
magnetic
 

distance

 
greater
 

supply

 
charge
 

generating

 

diameter

 
particles
 

circle

 

receives


produces
 

effect

 

starting

 

charging

 

electric

 
theory
 

plates

 
electricity
 
electrometer
 

current


illuminated

 

negative

 

distances

 

abrupt

 

actual

 

compared

 

completely

 

inappreciable

 

phenomena

 

diminution


abruptly
 

considerable

 

diminishes

 
destroy
 

slight

 

increase

 

increasing

 

connected

 
planes
 
established

intensity

 

definite

 
violet
 

approach

 

unlimited

 

cycloid

 

extent

 

receive

 

starts

 

particle