FREE BOOKS

Author's List




PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  
in lighting for photography and ignite it in a Bunsen flame. If it is held carefully while burning, a ribbon of ash (magnesia) will be obtained intact. Placing this in the faintly luminous flame, he will be surprised at the brilliance of its incandescence when it has become heated. The simple experiment indicates the possibilities of light-production in this direction. Naturally, metals of high melting-point such as platinum were tried and a network of platinum wire, in reality a platinum mantle, came into practical use in about 1880. The town of Nantes was lighted by gas-burners using these platinum-gauze mantles, but the mantles were unsuccessful owing to their rapid deterioration. This line of experimentation finally bore fruit of immense value for from it the gas-mantle evolved. A group of so-called "rare-earths," among which are zirconia, thoria, ceria, erbia, and yttria (these are oxides of zirconium, etc.) possess a number of interesting chemical properties some of which have been utilized to advantage in the development of modern artificial light. They are white or yellowish-white oxides of a highly refractory character found in certain rare minerals. Most of them are very brilliant when heated to a high temperature. This latter feature is easily explained if the nature of light and the radiating properties of substances are considered. Suppose pieces of different substances, for example, glass and lime, are heated in a Bunsen flame to the same temperature which is sufficiently great to cause both of them to glow. Notwithstanding the identical conditions of heating, the glass will be only faintly luminous, while the piece of lime will glow brilliantly. The former is a poor radiator; furthermore, the lime radiates a relatively greater percentage of its total energy in the form of luminous energy. The latter point will become clearer if the reader will refresh his memory regarding the nature of light. Any luminous source such as the sun, a candle flame, or an incandescent lamp is sending forth electromagnetic waves not unlike those used in wireless telegraphy excepting that they are of much shorter wave-length. The eye is capable of recording some of these waves as light just as a receiving station is tuned to record a range of wave-lengths of electromagnetic energy. The electromagnetic waves sent forth by a light-source like the sun are not all visible, that is, all of them do not arouse a sensation of light.
PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  



Top keywords:

platinum

 

luminous

 

electromagnetic

 

heated

 
energy
 
oxides
 

source

 

mantles

 

mantle

 

temperature


substances

 

nature

 

faintly

 

Bunsen

 

properties

 

brilliant

 

identical

 
conditions
 

radiator

 

brilliantly


heating
 
considered
 

Suppose

 

pieces

 

radiating

 

sufficiently

 

easily

 
feature
 

explained

 

Notwithstanding


capable

 
recording
 

receiving

 
length
 

excepting

 

shorter

 
station
 
visible
 

arouse

 

sensation


record

 

lengths

 

telegraphy

 

wireless

 

clearer

 

reader

 
refresh
 

greater

 
percentage
 

memory