FREE BOOKS

Author's List




PREV.   NEXT  
|<   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112  
113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   >>   >|  
was cut short by the appearance of metal filaments. In 1803 a new element was discovered and named tantalum. It is a dark, lustrous, hard metal. Pure tantalum is harder than steel; it may be drawn into fine wire; and its melting-point is very high (about 5100 deg.F.). It is seen to possess properties desirable for filaments, but for some reason it did not attract attention for a long time. A century elapsed after its discovery before von Bolton produced the first tantalum filament lamp. Owing to the low electrical resistance of tantalum, a filament in order to operate satisfactorily on a standard voltage must be long and thin. This necessitates storing away a considerable length of wire in the bulb without permitting the loops to come into contact with each other. After the filaments have been in operation for a few hundred hours they become brittle and faults develop. When examined under a microscope, parts of the filament operated on alternating current appear to be offset. The explanation of this defect goes deeply into crystalline structure. The tantalum filament was quickly followed by osmium and by tungsten in this country. The osmium filament appeared in 1905 and its invention is due to Welsbach, who had produced the marvelous gas-mantle. Owing to its extreme brittleness, osmium was finely divided and made into a paste of organic material. The filaments were squirted through dies and, after being formed and dried, they were heated to a high temperature. The organic matter disappeared and the fine metallic particles were sintered. This made a very brittle lamp, but its high efficiency served to introduce it. In 1870 when Scheele discovered a new element, known in this country as tungsten, no one realized that it was to revolutionize artificial lighting and to alter the course of some of the byways of civilization. This metal--which is known as "wolfram" in Germany, and to some extent in English-speaking countries--is one of the heaviest of elements, having a specific gravity of 19.1. It is 50 per cent. heavier than mercury and nearly twice as heavy as lead. It was early used in German silver to the extent of 1 or 2 per cent. to make platinoid, an alloy possessing a high resistance which varies only slightly as the temperature changes. This made an excellent material for electrical resistors. The melting-point of tungsten is about 5350 deg.F., which makes it desirable for filaments, but it was very brittle a
PREV.   NEXT  
|<   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112  
113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   >>   >|  



Top keywords:

tantalum

 

filament

 

filaments

 

brittle

 

osmium

 

tungsten

 

produced

 

temperature

 
resistance
 

electrical


extent

 

organic

 
material
 
melting
 

country

 

element

 

desirable

 

discovered

 

served

 

introduce


divided
 

Scheele

 

extreme

 
realized
 

marvelous

 

mantle

 

formed

 

heated

 

disappeared

 

matter


metallic

 

squirted

 

brittleness

 
finely
 

sintered

 
particles
 

efficiency

 
gravity
 
silver
 

German


platinoid
 

excellent

 
resistors
 

slightly

 

possessing

 

varies

 

civilization

 

wolfram

 
Germany
 

English