FREE BOOKS

Author's List




PREV.   NEXT  
|<   448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472  
473   474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   >>   >|  
han those sought for in vain by Mr. Huxley. These particles, as already stated, must have been less than 1/100000th of an inch in diameter. And now I want you to consider the following question: Here are particles which have been growing continually for fifteen minutes, and at the end of that time are demonstrably smaller than those which defied the microscope of Mr. Huxley--_What must have been the size of these particles at the beginning of their growth?_ What notion can you form of the magnitude of such particles? The distances of stellar space give us simply a bewildering sense of vastness, without leaving any distinct impression on the mind; and the magnitudes with which we have here to do, bewilder us equally in the opposite direction. We are dealing with infinitesimals, compared with which the test objects of the microscope are literally immense. From their perviousness to stellar light, and other considerations, Sir John Herschel drew some startling conclusions regarding the density and weight of comets. You know that these extraordinary and mysterious bodies sometimes throw out tails 100,000,000 miles in length, and 50,000 miles in diameter. The diameter of our earth is 8,000 miles. Both it and the sky, and a good portion of space beyond the sky, would certainly be included in a sphere 10,000 miles across. Let us fill a hollow sphere of this diameter with cometary matter, and make it our unit of measure. To produce a comet's tail of the size just mentioned, about 300,000 such measures would have to be emptied into space. Now suppose the whole of this stuff to be swept together, and suitably compressed, what do you suppose its volume would be? Sir John Herschel would probably tell you that the whole mass might be carted away, at a single effort, by one of your dray-horses. In fact, I do not know that he would require more than a small fraction of a horse-power to remove the cometary dust. After this, you will hardly regard as monstrous a notion I have sometimes entertained, concerning the quantity, of matter in our sky. Suppose a shell to surround the earth at a distance which would place it beyond the grosser matter that hangs in the lower regions of the air--say at the height of the Matterhorn or Mont Blanc. Outside this shell we should have the deep blue firmament. Let the atmospheric space beyond the shell be swept clean, and the sky-matter properly gathered up. What would be its probable
PREV.   NEXT  
|<   448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472  
473   474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   >>   >|  



Top keywords:

matter

 

particles

 

diameter

 
Herschel
 

microscope

 

stellar

 

notion

 

suppose

 

Huxley

 
cometary

sphere

 
volume
 
carted
 

compressed

 
suitably
 

produce

 

measure

 

hollow

 
measures
 
emptied

mentioned

 
height
 

Matterhorn

 

regions

 
distance
 

grosser

 

properly

 
gathered
 

probable

 

atmospheric


firmament

 

Outside

 

surround

 

Suppose

 

require

 

horses

 

effort

 

fraction

 

monstrous

 

regard


entertained

 

quantity

 
remove
 

single

 

mysterious

 

magnitude

 

distances

 
growth
 

beginning

 

demonstrably