FREE BOOKS

Author's List




PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  
causing both of the weights to tip to the left of the vertical, D, tending to fall over, the left tends to raise the right hand end of the beam, and the connecting piece, J H, also tending to fall to the left, tends to lower the left hand end of E and the piece, J. The moments of the structure, E C H, and A B D being equal, and one tending to raise J and the other to lower it, the effect will be zero, and J will remain in its normal position. It is not at all necessary, however, to have the weights and dimensions of the structure, E C H, equal to those of A B D. All that is necessary is that the components of the weight of each part of the structure which act vertically on J shall be equal and opposite. For, if the left end of the beam, E, is made shorter than the right end of the beam, A, a given angle of rotation of the beam, A, will cause a greater-angle of rotation of E, consequently will tip the weight, H, further from the vertical than the weight, D, is tipped, and in that case the weight, D, must be made smaller than H, to produce an equal and opposite effect upon J. In practice it is convenient to make the beam, E, only one-fifth to one-twentieth as long as A, and to correspondingly reduce the weight, H, relatively to D. In this case, on account of the angle of rotation of the beam, E, being greater than the angle of rotation of A, the beam, E, becomes a multiplier of the indications of the primary beam, A. Mr. Kent has devised a modification of Dr. Springer's system, which is shown in Fig. 3. It is applied in those varieties of the torsion balance in which there are two parallel beams, connected by either four or six wires. The wire, F, carrying the secondary beam, E, and poise, H, instead of being carried on an independent support, rigidly attached to the base, as above described, is attached directly to a moving part of the balance itself, and preferably to the two beams. In Fig. 3, T T T are trusses over which are tightly stretched the wires, B B B. A A' are two beams rigidly clamped to the wires; _t_ is another truss with stretched wire, F F. The upper wire, F', is attached by means of a flexible spring and standard, S, to the upper beam, and the lower wire is attached either directly or through a standard to the lower beam. The secondary poise, H, is rigidly attached to the truss, _t_. The secondary beam, E, is also rigidly attached to the truss, and acts as a multiplying beam. The secondary structure th
PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  



Top keywords:

attached

 

weight

 

secondary

 

structure

 

rigidly

 
rotation
 

tending

 

directly

 

opposite

 

balance


greater
 

stretched

 

effect

 

standard

 

vertical

 

weights

 

system

 
multiplying
 

varieties

 

parallel


connected

 

torsion

 

applied

 

moving

 

preferably

 

tightly

 
clamped
 
carried
 

trusses

 
independent

support

 

flexible

 

spring

 
carrying
 

vertically

 

components

 

dimensions

 

shorter

 
moments
 

connecting


causing

 

remain

 

position

 

normal

 

multiplier

 

indications

 
account
 
primary
 

modification

 

devised