FREE BOOKS

Author's List




PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   >>  
tromotive force will, if plotted, be a wave line, the amplitude of which is the arithmetical sum of the positive and negative maxima of current or electromotive force, as the case may be, while a horizontal middle line joins the zero points of current or electromotive force. [Illustration: FIG. 1] It is well known that such a current passing in a coil or conductor laid parallel with or in inductive relation to a second coil or conductor, will induce in the second conductor, if on open circuit, alternating electromotive forces, and that if its terminals be closed or joined, alternating currents of the same rhythm, period, or pitch, will circulate in the second conductor. This is the action occurring in any induction coil whose primary wire is traversed by alternating currents, and whose secondary wire is closed either upon itself directly or through a resistance. What I desire to draw attention to in the present paper are the mechanical actions of attraction and repulsion which will be exhibited between the two conductors, and the novel results which may be obtained by modifications in the relative dispositions of the two conductors. [Illustration: FIG. 2.] In 1884, while preparing for the International Electrical Exhibition at Philadelphia, we had occasion to construct a large electro-magnet, the cores of which were about six inches in diameter and about twenty inches long. They were made of bundles of iron rod of about 5/16 inch diameter. When complete, the magnet was energized by the current of a dynamo giving continuous currents, and it exhibited the usual powerful magnetic effects. It was found also that a disk of sheet copper, of about 1/16 inch thickness and 10 inches in diameter, if dropped flat against a pole of the magnet, would settle down softly upon it, being retarded by the development of currents in the disk due to its movement in a strong magnetic field, and which currents were of opposite direction to those in the coils of the magnet. In fact, it was impossible to strike the magnet pole a sharp blow with the disk, even when the attempt was made by holding one edge of the disk in the hand and bringing it down forcibly toward the magnet. In attempting to raise the disk quickly off the pole, a similar but opposite action of resistance to movement took place, showing the development of currents in the same direction to those in the coils of the magnet, and which currents, of course, would cause attr
PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   >>  



Top keywords:

currents

 

magnet

 

conductor

 

current

 

diameter

 

alternating

 
inches
 

electromotive

 

movement

 

development


closed

 

direction

 
exhibited
 

conductors

 

magnetic

 

resistance

 

action

 
opposite
 
Illustration
 

complete


energized

 
powerful
 

attempting

 
continuous
 
giving
 

quickly

 

dynamo

 

similar

 
showing
 

twenty


bundles

 

effects

 

attempt

 

strong

 

holding

 

retarded

 

strike

 

impossible

 

softly

 
thickness

copper

 
forcibly
 

dropped

 

settle

 
bringing
 

circuit

 

forces

 

induce

 
relation
 

parallel