FREE BOOKS

Author's List




PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>  
ne varying. 3. For a given band or ray there exist in the crystal three rectangular directions of symmetry, according to one of which the band generally disappears, so that for a suitable direction of the luminous vibrations the crystal no longer absorbs the radiations corresponding to the region of the spectrum where the band question appeared. These three directions may be called the principal directions of absorption, relative to this band. 4. In the orthorhombic crystals, by a necessary consequence of crystalline symmetry, the principal directions of absorption of all the bands coincide with the three axes of symmetry. We may thus observe three principal absorption spectra. In uniaxial crystals the number of absorption spectra is reduced to two. 5. In clinorhombic crystals one of the principal directions of absorption of each crystal coincides with the only axis of symmetry; the two other principal rectangular directions of each band may be found variously disposed in the plane normal to this axis. Most commonly these principal directions are very near to the principal corresponding directions of optical elasticity. 6. In various crystals the characters of the absorption phenomena differ strikingly from those which we might expect to find after an examination of the optical properties of the crystal. We have just seen that in clinorhombic crystals the principal absorption directions of certain bands were completely different from the axis of optical elasticity of the crystal for the corresponding radiations. If we examine this anomaly, we perceive that the crystals manifesting these effects are complex bodies, formed of various matters, one, or sometimes several, of which absorb light and give each different absorption bands. Now, M. De Senarmont has shown that the geometric isomorphism of certain substances does not necessarily involve identity of optical properties, and in particular in the directions of the axes of optical elasticity in relation to the geometric directions of the crystal. In a crystal containing a mixture of isomorphous substances, each substance brings its own influence, which may be made to predominate in turn according to the proportions of the mixture. We may, therefore, admit that the molecules of each substance enter into the crystal retaining all the optical properties which they would have if each crystallized separately. The principal directions of optical elasticity are given by the result
PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>  



Top keywords:

directions

 

principal

 

crystal

 

absorption

 

optical

 

crystals

 
symmetry
 

elasticity

 

properties

 

substances


spectra

 

clinorhombic

 
rectangular
 

geometric

 

mixture

 

substance

 

radiations

 
absorb
 
complex
 

predominate


result

 
bodies
 

matters

 
effects
 
formed
 

manifesting

 

completely

 

proportions

 
anomaly
 

perceive


examine

 

influence

 

crystallized

 

necessarily

 

involve

 

identity

 

relation

 

separately

 

isomorphous

 
retaining

Senarmont

 
molecules
 

isomorphism

 

brings

 
question
 

appeared

 

spectrum

 

absorbs

 
region
 

called