FREE BOOKS

Author's List




PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  
NT 75. Bare an inch of each end of a piece of insulated wire about 10 feet long. Fasten one end to the zinc of your battery or to one wire from the storage battery; wrap the wire around and around an iron machine bolt, leaving the bolt a foot or so from the battery, until you have only about a foot of wire left. Hold your bolt over some iron filings. Is it a magnet? Now touch the free end of your wire to the carbon of your battery or to the other wire from the storage battery, and hold the bolt over the iron filings. Is it a magnet now? You have completed the circuit by touching the free end of the wire to the free pole of your battery; so the electricity flows through the wire, around the bolt, and back to the battery. Disconnect one end of the wire from the battery. You have now broken the circuit, and the electricity can no longer flow around the bolt to magnetize it. See if the bolt will pick up the iron filings any more; it may keep a little of its magnetism even when no electricity is flowing, but the magnetism will be noticeably less. When you disconnect the wire so that the electricity can no longer flow through a complete circuit from its source back to its source again, you are said to _break the circuit_. [Illustration: FIG. 139. Sending a message with a cigar-box telegraph.] EXPERIMENT 76. Examine the cigar-box telegraph (see Appendix B) and notice that it is made on the same principle as was the magnetized bolt in Experiment 75. Complete the circuit through the electromagnet (the bolt wound with wire) by connecting the two ends of the wire that is wrapped around the bolt, with wires from the two poles of the battery. By making and breaking the circuit (connecting and disconnecting one of the wires) you should be able to make the lower bolt jump up and down and give the characteristic click of the telegraph instrument. In this experiment it does not matter how long the wires are if the batteries are strong enough. Of course it makes no difference where you break the circuit. So you could have the batteries in the laboratory and the cigar box a hundred miles away, with the wire going from the batteries to the bolt and back again. Then if you made and broke the circuit at the laboratory, the instrument would click a hundred miles away. If you
PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  



Top keywords:

battery

 

circuit

 

electricity

 
filings
 

telegraph

 

batteries

 

source

 
magnetism
 

longer

 

instrument


magnet

 

laboratory

 

connecting

 

hundred

 

storage

 

breaking

 

making

 

electromagnet

 
magnetized
 

Experiment


Complete

 
principle
 

wrapped

 
strong
 

difference

 

matter

 
characteristic
 
experiment
 

disconnecting

 

flowing


carbon
 
Disconnect
 

touching

 

completed

 
insulated
 

machine

 

leaving

 
Fasten
 

broken

 

magnetize


Sending

 

Illustration

 

complete

 
message
 

EXPERIMENT

 

Appendix

 
Examine
 
disconnect
 
noticeably
 

notice