FREE BOOKS

Author's List




PREV.   NEXT  
|<   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177  
178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   >>   >|  
to rise half an inch in the tube. Put the membranous bag down into the pink, milky water, supporting the tube by passing it through a square cardboard and clamping it with a spring clothespin as shown in Figure 151. Every few minutes look to see what is happening. Does any of the red ink pass through the membrane? Does any of the cornstarch pass through? This is an example of diffusion through a membrane. The process is called _osmosis_, and the pressure that forces the liquid up the tube is called _osmotic pressure_. It is by this sort of diffusion that chicks which are being incubated get air, and that growing plants get food. It is in this way that the cells of our body secure food and oxygen and get rid of their wastes. There are no little holes in our blood vessels to let the air get into them from our lungs. The air simply diffuses through the thin walls of the blood vessels. There are no holes from the intestinal tract into the blood vessels. Yet the dissolved food diffuses right through the intestinal wall and through the walls of the blood vessels. And later on, when it reaches the body cells that need nourishment, the dissolved food diffuses out through the walls of the blood vessels again and through the cell walls into the cells. Waste is taken out of the cells into the blood and passes from the blood into the lungs and kidneys by this same process of diffusion. So you can readily see why everything would die if diffusion stopped. [Illustration: FIG. 151. Pouring the syrup into the "osmosis tube."] _APPLICATION 65._ Explain how the roots of a plant can take in water and food when there are no holes from the outside of the root to the inside; how bees can smell flowers for a considerable distance. INFERENCE EXERCISE Explain the following: 401. A shell in the bottom of a teakettle gathers most of the scale around it and so keeps the scale from caking at the bottom of the kettle. 402. There is oxygen dissolved in water. When the water comes in contact with the fine blood vessels in a fish's gills, some of this oxygen passes through the walls of the blood vessels into the blood. Explain how it does so. 403. Asphalt becomes soft in summer. 404. When the trolley comes off the wire the car soon stops. 405. You cannot see stars in the daytime on earth, yet you could see them in the daytime on the airless
PREV.   NEXT  
|<   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177  
178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   >>   >|  



Top keywords:

vessels

 

diffusion

 

oxygen

 

Explain

 

dissolved

 

diffuses

 
passes
 

osmosis

 
pressure
 
called

intestinal

 
bottom
 
daytime
 

process

 
membrane
 

inside

 
Illustration
 

flowers

 
distance
 

considerable


stopped

 
APPLICATION
 

airless

 

Pouring

 

INFERENCE

 

caking

 

kettle

 

contact

 

Asphalt

 

EXERCISE


trolley

 

gathers

 

summer

 
teakettle
 
cornstarch
 

happening

 

chicks

 

osmotic

 

forces

 

liquid


minutes

 

square

 
cardboard
 

supporting

 
passing
 
membranous
 

clamping

 
Figure
 
spring
 

clothespin