FREE BOOKS

Author's List




PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  
er wire very easily. So if we fasten one end of the copper wire to the carbon and the other end to the zinc, the electrons will flow from the zinc to the carbon as long as there are more electrons on the zinc; that is, until the battery wears out. Therefore we have a steady flow of electricity through the wire. While the electricity is flowing from one pole to the other, we can make it do work. EXPERIMENT 64. Set up two or three Samson cells. They consist of a glass jar, an open zinc cylinder, and a smaller carbon cylinder. Dissolve a little over half a cup of sal ammoniac in water and put it into the glass jar; then fill the jar with water up to the line that is marked on it. Put the carbon and zinc which are attached to the black jar cover into the jar. Be careful not to let the carbon touch the zinc. One of these cells will probably not be strong enough to ring a doorbell for you; so connect two or three together in series as follows: Fasten a piece of copper wire from the carbon of the first cell to the zinc of the second. If you have three cells, fasten another piece of wire from the carbon of the second cell to the zinc of the third, as shown in Figure 111. Fasten one end of a copper wire to the zinc of the first cell and the other end of this wire to one binding post of an electric bell. Fasten one end of another piece of copper wire to the carbon of the third cell, if you have three, and touch the other end of this wire to the free binding post of the electric bell. If you have everything connected rightly, the bell should ring. [Illustration: FIG. 111. A wet battery of three cells connected to ring a bell.] DIFFERENT KINDS OF BATTERIES. There are many different kinds of batteries. The one you have just made is a simple one frequently used for doorbells. Other batteries are more complicated. Some are made with copper and zinc in a solution of copper sulfate; some, even, are made by letting electricity from a dynamo run through a solution from one lead plate to another until a chemical substance is stored on one of them; then, when the two lead plates are connected by a wire, the electrons run from one to the other. This kind of battery is called a _storage battery_, and it is much used in submarines and automobiles. [Illustration: FIG. 112. A battery of three dry cells.] But all the different batteries work on th
PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  



Top keywords:

carbon

 

copper

 

battery

 

electricity

 

batteries

 

connected

 
Fasten
 

electrons

 
solution
 
cylinder

binding

 
electric
 
fasten
 

Illustration

 
DIFFERENT
 

BATTERIES

 
rightly
 

dynamo

 
called
 

storage


plates

 
submarines
 

automobiles

 

stored

 

substance

 

doorbells

 

frequently

 

simple

 

complicated

 

chemical


letting

 

sulfate

 

careful

 
Samson
 
EXPERIMENT
 

consist

 

Dissolve

 

smaller

 

easily

 

flowing


steady

 

Therefore

 
strong
 

doorbell

 
series
 
connect
 

ammoniac

 
marked
 
attached
 

Figure