FREE BOOKS

Author's List




PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  
er mixed with charcoal is a still faster material, and horns and hoofs exceed even this in speed; but these two compounds are restricted by their cost to use with high-grade articles, usually of tool or high-carbon steel, that are to be hardened locally--that is, "pack-hardened." Cyanide of potassium or prussiate of potash are also included in the list of carbonizing materials; but outside of carburizing by dipping into melted baths of this material, their use is largely confined to local hardening of small surfaces, such as holes in dies and the like. Dr. Federico Giolitti has proven that when carbonizing with charcoal, or charcoal plus barium carbonate, the active agent which introduces carbon into the steel is a gas, carbon monoxide (CO), derived by combustion of the charcoal in the air trapped in the box, or by decomposition of the carbonate. This gas diffuses in and out of the hot steel, transporting carbon from the charcoal to the outer portions of the metal: If energizers like tar, peat, and vegetable fiber are used, they produce hydrocarbon gases on being heated--gases principally composed of hydrogen and carbon. These gases are unstable in the presence of hot iron: it seems to decompose them and sooty carbon is deposited on the surface of the metal. This diffuses into the metal a little, but it acts principally by being a ready source of carbon, highly active and waiting to be carried into the metal by the carbon monoxide--which as before, is the principal transfer agent. Animal refuse when used to speed up the action of clean charcoal acts somewhat in the same manner, but in addition the gases given off by the hot substance contain nitrogen compounds. Nitrogen and cyanides (compounds of carbon and nitrogen) have long been known to give a very hard thin case very rapidly. It has been discovered only recently that this is due to the steel absorbing nitrogen as well as carbon, and that nitrogen hardens steel and makes it brittle just like carbon does. In fact it is very difficult to distinguish between these two hardening agents when examining a carburized steel under the microscope. One of the advantages of hardening by carburizing is the fact that you can arrange to leave part of the work soft and thus retain the toughness and strength of the original material. Figures 33 to 37 show ways of doing this. The inside of the cup in Fig. 34 is locally hardened, as illustrated in Fig. 34, "spent" or used bo
PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  



Top keywords:

carbon

 

charcoal

 
nitrogen
 

material

 

hardened

 

hardening

 

compounds

 

carburizing

 

monoxide

 
diffuses

principally

 
carbonate
 
active
 
carbonizing
 
locally
 

Animal

 

principal

 

carried

 

discovered

 

transfer


rapidly

 

manner

 

Nitrogen

 

addition

 

cyanides

 

action

 

substance

 

refuse

 
retain
 

toughness


strength

 

original

 

illustrated

 

inside

 
Figures
 
arrange
 

brittle

 
difficult
 
hardens
 

absorbing


distinguish
 
microscope
 

advantages

 

carburized

 

waiting

 

agents

 

examining

 

recently

 

melted

 

largely