FREE BOOKS

Author's List




PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  
es. For the first time man had command of a steady supply of electricity without toil or effort. The useful results obtainable previously from the current of a frictional machine were not much greater than those to be derived from the flight of a rocket. While the frictional appliance is still employed in medicine, it ranks with the flint axe and the tinder-box in industrial obsolescence. No art or trade could be founded on it; no diminution of daily work or increase of daily comfort could be secured with it. But the little battery with its metal plates in a weak solution proved a perennial reservoir of electrical energy, safe and controllable, from which supplies could be drawn at will. That which was wild had become domesticated; regular crops took the place of haphazard gleanings from brake or prairie; the possibility of electrical starvation was forever left behind. Immediately new processes of inestimable value revealed themselves; new methods were suggested. Almost all the electrical arts now employed made their beginnings in the next twenty-five years, and while the more extensive of them depend to-day on the dynamo for electrical energy, some of the most important still remain in loyal allegiance to the older source. The battery itself soon underwent modifications, and new types were evolved--the storage, the double-fluid, and the dry. Various analogies next pointed to the use of heat, and the thermoelectric cell emerged, embodying the application of flame to the junction of two different metals. Davy, of the safety-lamp, threw a volume of current across the gap between two sticks of charcoal, and the voltaic arc, forerunner of electric lighting, shed its bright beams upon a dazzled world. The decomposition of water by electrolytic action was recognized and made the basis of communicating at a distance even before the days of the electromagnet. The ties that bind electricity and magnetism in twinship of relation and interaction were detected, and Faraday's work in induction gave the world at once the dynamo and the motor. "Hitch your wagon to a star," said Emerson. To all the coal-fields and all the waterfalls Faraday had directly hitched the wheels of industry. Not only was it now possible to convert mechanical energy into electricity cheaply and in illimitable quantities, but electricity at once showed its ubiquitous availability as a motive power. Boats were propelled by it, cars were hauled, and even papers
PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  



Top keywords:

electrical

 

electricity

 
energy
 

employed

 

dynamo

 

Faraday

 

battery

 
current
 

frictional

 

volume


motive

 

safety

 

metals

 
sticks
 
bright
 

dazzled

 

lighting

 
electric
 

charcoal

 

voltaic


forerunner
 

propelled

 
Various
 

analogies

 

papers

 

double

 

storage

 

underwent

 

modifications

 
evolved

pointed

 

hauled

 

junction

 
application
 

embodying

 
thermoelectric
 
emerged
 

induction

 

convert

 
detected

mechanical

 
wheels
 
hitched
 

directly

 

waterfalls

 

industry

 

Emerson

 
interaction
 
relation
 

recognized