FREE BOOKS

Author's List




PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   >>   >|  
not say anything more about the plantigrade division. But the digitigrade modification necessitated a change of structural plan, to the extent of raising the wrist and ankle joints off the ground, so as to make the quadruped walk on its fingers and toes. We meet with an interesting case of this transition in the existing hare, which while at rest supports itself on the whole hind foot after the manner of a plantigrade animal, but when running does so upon the ends of its toes, after the manner of a digitigrade animal. It is of importance for us to note that this transition from the original plantigrade to the more recent digitigrade type, has been carried out on two slightly different plans in two different lines of mammalian descent. The hoofed mammals--which are all digitigrade--are sub-classified as artiodactyls and perissodactyls, i. e. even-toed and odd-toed. Now, whether an animal has an even or an odd number of toes may seem a curiously artificial distinction on which to found so important a classification of the mammalian group. But if we look at the matter from a less empirical and more intelligent point of view, we shall see that the alternative of having an even or an odd number of toes carries with it alternative consequences of a practically important kind to any animal of the digitigrade type. For suppose an aboriginal five-toed animal, walking on the ends of its five toes, to be called upon to resign some of his toes. If he is left with an even number, it must be two or four; and in either case the animal would gain the firmest support by so disposing his toes as to admit of the axis of his foot passing between an equal number of them--whether it be one or two toes on each side. On the other hand, if our early mammal were called upon to retain an odd number of toes, he would gain best support by adjusting matters so that the axis of his foot should be coincident with his middle toe, whether this were his only toe, or whether he had one on either side of it. This consideration shows that the classification into even-toed and odd-toed is not so artificial as it no doubt at first sight appears. Let us, then, consider the stages in the evolution of both these types of feet. Going back to the reptile _Chelydra_, it will be observed that the axis of the foot passes down the middle toe, which is therefore supported by two toes on either side (Fig. 78). It may also be noticed that the wrist or ankle bones do
PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   >>   >|  



Top keywords:

animal

 

number

 

digitigrade

 

plantigrade

 

artificial

 

important

 

mammalian

 

middle

 
classification
 

alternative


called
 

transition

 

manner

 
support
 

resign

 
walking
 
passing
 

disposing

 

firmest

 

noticed


adjusting

 

passes

 
stages
 

appears

 
observed
 

evolution

 

Chelydra

 

reptile

 
matters
 

retain


mammal

 

coincident

 

consideration

 

supported

 

supports

 

interesting

 

existing

 

original

 
recent
 
importance

running

 

necessitated

 

change

 

structural

 

modification

 

division

 

extent

 

quadruped

 

fingers

 

ground