FREE BOOKS

Author's List




PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   >>   >|  
ance of the achromatin substance between the two groups of chromatin loops is observable (H). In some cases (especially egg-cells) this striated arrangement of the achromatin is then termed a "nucleus-spindle," and the group of chromatin loops (G, _a_) is known as "the equatorial plate." At each end of the nucleus-spindle in these cases there is often seen a star consisting of granules belonging to the general protoplasm of the cell (G, _c_). These are known as "polar stars." After the separation of the two sets of loops (H) the protoplasm of the general substance of the cell becomes constricted, and division occurs, so as to include a group of chromatin loops in each of the two fission products. Each of these then rearranges itself together with the associated chromatin into a nucleus such as was present in the mother cell to commence with (I)[13]. [13] Ray Lankester, _Encyclop. Brit._, 9th ed., Vol. XIX, pp. 832-3. Since the above was published, however, further progress has been made. In particular it has been found that the chromatin fibres pass from phase D to phase F by a process of longitudinal splitting (Fig. 37 _g_, _h_; Fig. 38, VI, VII)--which is a point of great importance for Weismann's theory of heredity,--and that the protoplasm outside the nucleus seems to take as important a part in the karyokinetic process as does the nuclear substance. For the so-called "attraction-spheres" (Fig. 38 II _a_, III, III _a_, VIII to XII), which were at first supposed to be of subordinate importance in the process as a whole, are now known to take an exceedingly active part in it (see especially IX to XI). Lastly, it may be added that there is a growing consensus of authoritative opinion, that the chromatin fibres are the seats of the material of heredity, or, in other words, that they contain those essential elements of the cell which endow the daughter-cells with their distinctive characters. Therefore, where the parent-cell is an ovum, it follows from this view that all hereditary qualities of the future organism are potentially present in the ultra-microscopical structure of the chromatin fibres. [Illustration: FIG. 37.--Study of successive changes taking place in the nucleus of an epithelium cell, preparatory to division of the cell. (From _Quain's Anatomy_, after Flemming.) _a_, resting cell, showing the nuclear network; _b_, fi
PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   >>   >|  



Top keywords:

chromatin

 
nucleus
 

fibres

 
protoplasm
 

process

 

substance

 

general

 

present

 

division

 

nuclear


importance

 

heredity

 
spindle
 

achromatin

 

growing

 

consensus

 
authoritative
 

Lastly

 
opinion
 

material


essential
 

active

 

spheres

 

called

 

attraction

 

exceedingly

 

subordinate

 

supposed

 

belonging

 

elements


epithelium

 

preparatory

 

taking

 
successive
 
network
 

showing

 

resting

 
Anatomy
 

Flemming

 

Illustration


structure

 

parent

 

Therefore

 

characters

 

daughter

 
distinctive
 

potentially

 
microscopical
 

organism

 

future