FREE BOOKS

Author's List




PREV.   NEXT  
|<   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97  
98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>   >|  
f glass does not appear on the list, an application may be made to the Jena Factory of Herr Schott. In order to give a definite example, I may mention that for ordinary telescopic objectives good results may be obtained by combining the hard crown and dense flint of Chance's list, using the crown to form a double convex, and the flint to form a double concave lens. The convex lens is placed in the more outward position in the telescope, i.e. the light passes first through it. The conditions to be fulfilled are: (1) The glass must be achromatic; (2) it must have a small spherical aberration for rays converging to the principal focus. It is impossible to discuss these matters without going into a complete optical discussion. The radii of curvature of the surfaces, beginning with the first, i.e. the external face of the convex lens, are in the ratio of 1, 2, and 3; an allowance of 15 inches focal length per inch of aperture is reasonable (see Optics in Ency. Brit.), and the focal length is the same as the greatest radius of curvature. Thus, for an object glass 2 inches in diameter, the first surface of the convex lens would have a radius of curvature of 10 inches, the surface common to the convex and concave lens would have a radius of curvature of 20 inches, and the last surface a radius of curvature of 30 inches. This would also be about the focal length of the finished lens. The surfaces in contact have, of course, a common curvature, and need not be cemented together unless a slight loss of light is inadmissible. I will assume that a lens of about 2 inches diameter is to be made by hand, i.e. without the help of a special grinding or polishing machine; this can be accomplished perfectly well, so long as the diameter of the glass is not above about 6 inches, after which the labour is rather too severe. The two glass discs having been obtained from the makers, it will be found that they are slightly larger in diameter than the quoted size, something having been left for the waste of working. It is difficult to deal with the processes of lens manufacture without entering at every stage into rather tedious details, and, what is worse, without interrupting the main account for the purpose of describing subsidiary instruments or processes. In order that the reader may have some guide in threading the maze, it is necessary that he should commence with a clear idea of the broad principles of construc
PREV.   NEXT  
|<   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97  
98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>   >|  



Top keywords:

inches

 

curvature

 
convex
 

diameter

 
radius
 

surface

 
length
 
double
 

concave

 

processes


common
 
surfaces
 

obtained

 

severe

 

labour

 
assume
 

inadmissible

 

slight

 
special
 

grinding


perfectly

 

accomplished

 
polishing
 

machine

 

instruments

 

reader

 

subsidiary

 
describing
 
interrupting
 

account


purpose

 

threading

 

principles

 
construc
 
commence
 

quoted

 

larger

 
makers
 

slightly

 

working


tedious

 
details
 

entering

 
difficult
 

cemented

 
manufacture
 

outward

 

position

 

Chance

 

telescope