FREE BOOKS

Author's List




PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   >>   >|  
sible, to boil the mercury in situ, which involves making the wrapping of asbestos, but, after all, we come back to the position I began by taking up, viz. that the easiest and most reliable method is by fusion of the glass--all the rest are unsuitable for work of real precision. I should be ungrateful, however, were I not to devote a few lines to the great convenience and merit of so-called "centering cement." This substance has two or three very valuable properties. It is very tough and strong in itself, and it remains plastic on cooling for some time before it really sets. If for any reason a small tube has to be cemented into a larger one, which is a good deal larger, so that an appreciable mass of cement is necessary, and particularly if the joint requires to have great mechanical strength, this cement is invaluable. I have even used a plug of it instead of a cork for making the joint between a gas delivery tube and a calcium chloride tower. (Why are these affairs made with such abominable tubulures?) The joint in question has never allowed the tube to sag though it projects horizontally to a distance of 6 inches, and has had to withstand nearly two years of Sydney temperature. The cement consists of a mixture of shellac and 10 per cent of oil of cassia. The shellac is first melted in an iron ladle, and the oil of cassia quickly added and stirred in, to an extent of about 10 per cent, but the exact proportions are not of importance. Great care must be taken not to overheat the shellac. APPENDIX TO CHAPTER I ON THE PREPARATION OF VACUUM TUBES FOR THE PRODUCTION OF PROFESSOR ROENTGEN'S RADIATION [Footnote: Written in May 1896.] WHEN Professor Roentgen's discovery was first announced at the end of 1895 much difficulty was experienced in obtaining radiation of the requisite intensity for the repetition of his experiments. The following notes on the production of vacuum tubes of the required quality may therefore be of use to those who desire to prepare their own apparatus. It appears that flint glass is much more opaque to Roentgen's radiation than soda glass, and consequently the vacuum tubes require to be prepared from the latter material. Fig. 39. A form of vacuum tube which has proved very successful in the author's hands is sketched in Fig. 38. It is most easily constructed as follows. A bit of tubing about 2 centimetres diameter, 15 centimetres long, and 1.5 millimetre wall thick
PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   >>   >|  



Top keywords:

cement

 
shellac
 
vacuum
 

cassia

 
Roentgen
 
larger
 
radiation
 

centimetres

 

making

 

Written


difficulty
 

Footnote

 

announced

 

Professor

 
discovery
 
CHAPTER
 

importance

 

proportions

 

extent

 
quickly

stirred
 

overheat

 

PRODUCTION

 

PROFESSOR

 
ROENTGEN
 

VACUUM

 

APPENDIX

 
experienced
 

PREPARATION

 
RADIATION

author
 

successful

 

sketched

 

easily

 

proved

 
prepared
 

material

 

constructed

 

millimetre

 
tubing

diameter

 

require

 

required

 

production

 
quality
 

melted

 

intensity

 
requisite
 

repetition

 

experiments