FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
ter, with three blades and a rise of 6.3 meters, make with natural draught 105 revolutions, and with forced draught 120. The pumping apparatus are able to lift in one hour 400 tons of water. The front boiler room contains a special cylindrical boiler for the working of the electrical apparatus, for hydraulic pumps of the artillery service, for anchor windlasses, ventilators, fire engines, etc. The whole engines weigh 890 tons. The bunkers have a capacity for 660 tons of coal, which allows for a run of 4,500 sea miles. * * * * * CLARK'S GYROSCOPIC TORPEDOES. Figs. 1 and 2 represent, upon a scale of about 1/10, two types of torpedoes, the greatest number possible of the parts of which are made revolvable, so as to render the torpedoes as dirigible as the gyrating motion permits of. Fig. 1 represents an electric torpedo actuated by accumulators, A A, keyed upon the shaft, and revolving along with the gearings. At the beginning of the running, the accumulators are not all coupled, but under the action of a clockwork movement which is set in motion at the moment of starting, metallic brushes descend one after another upon the collectors, B, and set in action new batteries for keeping constant or, if need be, accelerating the speed at the end of the travel. [Illustration: Fig. 1.] [Illustration: Fig. 2. CLARK'S GYROSCOPIC TORPEDOES.] Fig. 2 represents an air torpedo proposed by the same inventor. The air reservoir, C, revolves along with the gearings under the action of the pneumatic machine, D. The central shaft is hollow, so as to serve as a conduit. The admission of air into the slide valve of the machine is regulated by a clockwork which actuates a slide in an aperture whose form and dimensions are so calculated that the speed remains as constant as possible toward the end of the travel. The trajectory of the two torpedoes is regulated by a cylindrical bellows, F, which gives entrance to the sea water. The springs shown in the figure balance the hydraulic pressure. The tension of these springs is regulated by the rod, H, according to the indications of the scale of depths, I. When the torpedo reaches too great a depth, the action of the springs can no longer balance the increase of the hydraulic pressure, and the accumulation of the charge in the rear causes the front to rise toward the surface. When the torpedo reaches the surface, a contrary action is produced
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:

action

 

torpedo

 
hydraulic
 
torpedoes
 
regulated
 

springs

 

GYROSCOPIC

 

represents

 

TORPEDOES

 

motion


clockwork

 

machine

 

Illustration

 

balance

 

pressure

 
surface
 

reaches

 
travel
 

gearings

 
constant

accumulators

 

cylindrical

 
boiler
 

engines

 

draught

 

apparatus

 

natural

 

admission

 

conduit

 

accelerating


dimensions

 
actuates
 

aperture

 

hollow

 

reservoir

 

inventor

 

proposed

 

revolves

 

forced

 

central


pumping

 

calculated

 

pneumatic

 

revolutions

 

blades

 

longer

 
increase
 
contrary
 
produced
 

accumulation