FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
sunbeams are refracted and reflected from tiny globes of water in the clouds; these convey to us the sunlight, and in doing so decompose the white beams into the seven primary hues--red, orange, yellow, green, blue, indigo, and violet. [Illustration: PLATE A. THE SUN. _Royal Observatory, Greenwich, July 8, 1892._] [Illustration: Fig. 17.--The Prism.] The bow set in the cloud is typical of that great department of modern science of which we shall now set forth the principles. The globes of water decompose the solar beams; and we follow the course suggested by the rainbow, and analyse the sunlight into its constituents. We are enabled to do this with scientific accuracy when we employ that remarkable key to Nature's secrets known as the spectroscope. The beams of white sunlight consist of innumerable beams of every hue in intimate association. Every shade of red, of yellow, of blue, and of green, can be found in a sunbeam. The magician's wand, with which we strike the sunbeam and sort the tangled skein into perfect order, is the simple instrument known as the glass prism. We have represented this instrument in its simplest form in the adjoining figure (Fig. 17). It is a piece of pure and homogeneous glass in the shape of a wedge. When a ray of light from the sun or from any source falls upon the prism, it passes through the transparent glass and emerges on the other side; a remarkable change is, however, impressed on the ray by the influence of the glass. It is bent by refraction from the path it originally pursued, and is compelled to follow a different path. If, however, the prism bent all rays of light equally, then it would be of no service in the analysis of light; but it fortunately happens that the prism acts with varying efficiency on the rays of different hues. A red ray is not refracted so much as a yellow ray; a yellow ray is not refracted so much as a blue one. It consequently happens that when the composite beam of sunlight, in which all the different rays are blended, passes through the prism, they emerge in the manner shown in the annexed figure (Fig. 18). Here then we have the source of the analysing power of the prism; it bends the different hues unequally and consequently the beam of composite sunlight, after passing through the prism, no longer shows mere white light, but is expanded into a coloured band of light, with hues like the rainbow, passing from deep red at one end through every inte
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:

sunlight

 

yellow

 

refracted

 
follow
 

figure

 

rainbow

 

passing

 
decompose
 

passes

 

instrument


source

 

globes

 

remarkable

 

composite

 

Illustration

 

sunbeam

 

refraction

 

change

 
emerges
 

originally


transparent

 
impressed
 

influence

 
efficiency
 

longer

 

unequally

 
analysing
 
expanded
 

coloured

 

service


analysis
 
fortunately
 

equally

 

compelled

 
varying
 

manner

 

annexed

 
emerge
 

blended

 

pursued


typical

 

department

 

modern

 
principles
 

science

 

Greenwich

 
Observatory
 
convey
 
clouds
 

sunbeams