FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  
y enabling them to work their way into the upper regions, where the temperature has so fallen that the vapour becomes chilled into cloud. A necessary consequence of the rapid cooling of these clouds, and the consequent radiation of heat on a large scale, would be the formation of what we may perhaps describe as smoke, which settles by degrees through the intervals between the clouds (making these intervals appear darker) until it is again volatilised on reaching a level of greater heat below the clouds. This same smoke is probably the cause of the well-known fact that the solar limb is considerably fainter than the middle of the disc. This seems to arise from the greater absorption caused by the longer distance which a ray of light from a point near the limb has to travel through this layer of smoke before reaching the earth. It is shown that this absorption cannot be attributed to a gaseous atmosphere, since this would have the effect of producing more dark absorption lines in the spectrum. There would thus be a marked difference between the solar spectrum from a part near the middle of the disc and the spectrum from a part near the limb. This, however, we do not find to be the case. With regard to the nature of sun-spots, the idea first suggested by Secchi and Lockyer, that they represent down rushes of cooler vapours into the photosphere (or to its surface), seems on the whole to accord best with the observed phenomena. We have already mentioned that the spots are generally accompanied by faculae and eruptive prominences in their immediate neighbourhood, but whether these eruptions are caused by the downfall of the vapour which makes the photospheric matter "splash up" in the vicinity, or whether the eruptions come first, and by diminishing the upward pressure from below form a "sink," into which overlying cooler vapour descends, are problems as to which opinions are still much divided. A remarkable appendage to the sun, which extends to a distance very much greater than that of the corona, produces the phenomenon of the zodiacal light. A pearly glow is sometimes seen in the spring to spread over a part of the sky in the vicinity of the point where the sun has disappeared after sunset. The same spectacle may also be witnessed before sunrise in the autumn, and it would seem as if the material producing the zodiacal light, whatever it may be, had a lens-shaped form with the sun in the centre. The nature of this obje
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  



Top keywords:
spectrum
 

greater

 

absorption

 
clouds
 

vapour

 

producing

 
vicinity
 

distance

 

caused

 
eruptions

middle

 

reaching

 

zodiacal

 
nature
 
intervals
 

cooler

 

matter

 

photospheric

 
splash
 

surface


downfall

 

accord

 

shaped

 

faculae

 

eruptive

 

accompanied

 

centre

 

generally

 

prominences

 

phenomena


mentioned

 

neighbourhood

 
observed
 

witnessed

 

pearly

 
sunrise
 

corona

 

produces

 

phenomenon

 

spectacle


disappeared

 

spread

 
spring
 

sunset

 

autumn

 
pressure
 

overlying

 
material
 
diminishing
 
upward