FREE BOOKS

Author's List




PREV.   NEXT  
|<   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371  
372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   >>   >|  
required for their separation.[36] The number of these objects was gradually increased by fresh discoveries, until in 1781 (the same year in which Herschel discovered Uranus) a list containing eighty double stars was published by the astronomer Bode. These interesting objects claimed the attention of Herschel during his memorable researches. The list of known doubles rapidly swelled. Herschel's discoveries are to be enumerated by hundreds, while he also commenced systematic measurements of the distance by which the stars were separated, and the direction in which the line joining them pointed. It was these measurements which ultimately led to one of the most important and instructive of all Herschel's discoveries. When, in the course of years, his observations were repeated, Herschel found that in some cases the relative position of the stars had changed. He was thus led to the discovery that in many of the double stars the components are so related that they revolve around each other. Mark the importance of this result. We must remember that the stars are suns, comparable, it may be, with our sun in magnitude; so that here we have the astonishing spectacle of pairs of suns in mutual revolution. There is nothing very surprising in the fact that movements should be observed, for in all probability every body in the universe is in motion. It is the particular character of the movement which is specially interesting and instructive. It had been imagined that the proximity of the two stars forming a double must be only accidental. It was thought that amid the vast host of stars in the heavens it not unfrequently happened that one star was so nearly behind another (as seen from the earth) that when the two were viewed in the telescope they produced the effect of a double star. No doubt many of the so-called double stars are produced in this way. Herschel's discovery shows that this explanation will not always answer, but that in many cases we really have two stars close together, and in motion round their common centre of gravity. When the measurements of the distances and the positions of double stars had been accumulated during many years, they were taken over by the mathematicians to be treated by their methods. There is one peculiarity about double star observations: they have not--they cannot have--the accuracy which the computer of an orbit demands. If the distance between the pair of stars forming a binary be four
PREV.   NEXT  
|<   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371  
372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   >>   >|  



Top keywords:

double

 

Herschel

 

measurements

 
discoveries
 

distance

 

produced

 

observations

 

forming

 

instructive

 
discovery

motion

 
objects
 
interesting
 

probability

 
accidental
 

movements

 

observed

 

universe

 
specially
 
imagined

heavens

 
movement
 

character

 

happened

 
proximity
 

unfrequently

 

thought

 
called
 

treated

 

methods


peculiarity

 

mathematicians

 

distances

 

positions

 

accumulated

 

accuracy

 

binary

 

demands

 

computer

 

gravity


centre

 

effect

 
telescope
 

viewed

 

explanation

 

common

 

answer

 
importance
 

rapidly

 

swelled