FREE BOOKS

Author's List




PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  
y-opened pupil, it may, however, happen that the image is not bright enough to excite the sensation of vision. Here the telescope comes to our aid: it catches all the rays in a beam whose original dimensions were far too great to allow of its admission through the pupil. The action of the lenses concentrates those rays into a stream slender enough to pass through the small opening. We thus have the brightness of the image on the retina intensified. It is illuminated with nearly as much light as would be collected from the same object through a pupil as large as the great lenses of the telescope. [Illustration: Fig. 1.--Principle of the Refracting Telescope.] In astronomical observatories we employ telescopes of two entirely different classes. The more familiar forms are those known as _refractors_, in which the operation of condensing the rays of light is conducted by refraction. The character of the refractor is shown in Fig. 1. The rays from the star fall upon the object-glass at the end of the telescope, and on passing through they become refracted into a converging beam, so that all intersect at the focus. Diverging from thence, the rays encounter the eye-piece, which has the effect of restoring them to parallelism. The large cylindrical beam which poured down on the object-glass has been thus condensed into a small one, which can enter the pupil. It should, however, be added that the composite nature of light requires a more complex form of object-glass than the simple lens here shown. In a refracting telescope we have to employ what is known as the achromatic combination, consisting of one lens of flint glass and one of crown glass, adjusted to suit each other with extreme care. [Illustration: Fig. 2.--The Dome of the South Equatorial at Dunsink Observatory Co Dublin.] [Illustration: Fig. 3.--Section of the Dome of Dunsink Observatory.] The appearance of an astronomical observatory, designed to accommodate an instrument of moderate dimensions, is shown in the adjoining figures. The first (Fig. 2) represents the dome erected at Dunsink Observatory for the equatorial telescope, the object-glass of which was presented to the Board of Trinity College, Dublin, by the late Sir James South. The main part of the building is a cylindrical wall, on the top of which reposes a hemispherical roof. In this roof is a shutter, which can be opened so as to allow the telescope in the interior to obtain a view of the heav
PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  



Top keywords:

telescope

 

object

 
Dunsink
 

Observatory

 

Illustration

 
astronomical
 

employ

 

Dublin

 

dimensions

 
opened

lenses

 
cylindrical
 

extreme

 

condensed

 

consisting

 
refracting
 

achromatic

 

combination

 

simple

 

adjusted


complex
 

requires

 
nature
 

composite

 

accommodate

 

building

 

Trinity

 
College
 

obtain

 

interior


shutter
 
reposes
 

hemispherical

 
presented
 

designed

 

instrument

 

observatory

 

appearance

 
Section
 
moderate

adjoining

 

equatorial

 

erected

 

figures

 
represents
 

Equatorial

 

refractor

 

opening

 
slender
 

stream