FREE BOOKS

Author's List




PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  
0 degrees initial temperature it is 800 degrees, and with 100 degrees initial it is 900 degrees. It will be observed that the zero heat curve is flatter than the others, indicating that when free air is admitted to a compressor cold, the relative increase of temperature is less than when the air is hot. This points to the importance of low initial temperature. We have now seen that the economical production of compressed air depends upon the following conditions: (1) A low initial temperature. (2) Thorough cooling during compression. It has been demonstrated by experiments made in France that the power required to compress moist air is less than that for dry air. A table showing the power required to compress moist and dry air has been prepared from the data of M. Mallard and shows that for five atmospheres the work expended in compressing one pound of dry air is 58,500 foot pounds, while that for moist air is 52,500 foot pounds. In expansion also moisture in the air adds to the economy, but in both cases the saving of power is not great enough to compensate for the many disadvantages due to the presence of water. Mr. Norman Selfe, of the Engineering Association of N.S.W., has compiled a table which shows some important theoretical conditions involved in producing compressed air. So much for the theory of compression. We now come to the practical production of compressed air. The first record that we have of the use of an air compressor is at Ramsgate Harbor, Kent, in the year 1788. Smeaton invented this "pump" for use in a diving apparatus. In 1851, William Cubitt, at Rochester Bridge, and a little later an engineer, Brunel, at Saltash, used compressed air for bridge work. But the first notable application of compressed air is due to Professor Colladon, of Geneva, whose plans were adopted at the Mont Cenis tunnel. M. Sommeiller developed the Colladon idea and constructed the compressed air plant illustrated in Fig. 2. [Illustration: FIG. 2.] The Sommeiller compressor was operated as a ram, utilizing a natural head of water to force air at 80 pounds pressure into a receiver. The column of water contained in the long pipe on the side of the hill was started and stopped automatically, by valves controlled by engines. The weight and momentum of the water forced a volume of air with such shock against a discharge valve that it was opened and the air was discharged into the tank; the valve was then closed, t
PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  



Top keywords:

compressed

 

degrees

 
initial
 

temperature

 

compressor

 

pounds

 

required

 

compress

 

compression

 

Colladon


Sommeiller
 

conditions

 

production

 

volume

 

engineer

 

Saltash

 

closed

 

Brunel

 

notable

 

adopted


Geneva

 

engines

 

application

 

Professor

 

bridge

 

William

 

Harbor

 

Ramsgate

 

weight

 
forced

Smeaton

 
invented
 

Cubitt

 

Rochester

 

apparatus

 

diving

 

Bridge

 

valves

 

opened

 

natural


discharged

 

utilizing

 

column

 

receiver

 

discharge

 

pressure

 

automatically

 
constructed
 

developed

 

tunnel