FREE BOOKS

Author's List




PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  
By Increase of Temperature alone. 13 Final Temperature if Water is used in Compression. Fah. 14 Percentage of Water to Air Required. 15 Foot Pounds to Compress One Pound Air. Dry. 16 Foot Pounds to Compress One Pound Air. With sufficient Moisture. The first advantage is by far the most important one, and is really the only excuse for water injection in air compressors. We have seen (table 3) that the percentage of work of compression which is converted into heat and loss when no cooling system is used is as follows: Compressing to 2 atmospheres loss 9.2 per cent. " " 3 " " 15.0 " " " " 4 " " 19.6 " " " " 5 " " 21.3 " " " " 6 " " 24.0 " " " " 7 " " 26.0 " " " " 8 " " 27.4 " " We see that in compressing air to five atmospheres, which is the usual practice, the heat loss is 21.3 per cent., so that if we keep down the temperature of the air during compression to the isothermal line, we save this loss. The best practice in America has brought this heat loss down to 3.6 per cent. (old Ingersoll Injection Air Compressor), while in Europe the heat loss has been reduced to 1.6 per cent. Steam-driven air compressors are usually run at a piston speed of about 350 feet per minute, or from 60-80 revolutions per minute of compressors of average sizes, say 18" diameter of cylinder. Sixty revolutions per minute is equal to 120 strokes, or two strokes per second. An air cylinder 18" in diameter filled with free air once every half second, and at each stroke compressing the air to 60 pounds, and thereby producing 309 degrees of heat, is thus, by means of water injection, cooled to an extent hardly possible with mere surface contact. The specific heat of water being about four times that of air, it readily takes up the heat of compression. A properly designed spray system must not be confused with the numerous devices applied to air cylinders, by means of which water is introduced. In some cases the water is merely drawn in through the inlet valves. In others it passes through the center of the piston and rod, coming in contact with the interior walls of the air cylinder between the packing rings. Introducing water into the air cylinder in _any other way, except in the form of a spray, has but little effect in cooling the air during compressi
PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  



Top keywords:

cylinder

 

compressors

 
minute
 

compression

 

injection

 

cooling

 

atmospheres

 

system

 

Temperature

 

diameter


compressing
 

Pounds

 

strokes

 

revolutions

 

Compress

 

piston

 

practice

 

contact

 

surface

 

extent


pounds

 

filled

 

degrees

 

cooled

 

producing

 

specific

 

stroke

 

interior

 

packing

 
coming

valves

 
passes
 

center

 

Introducing

 

effect

 

compressi

 

properly

 

designed

 

readily

 

introduced


cylinders

 

applied

 

confused

 

numerous

 

devices

 

Injection

 

excuse

 
percentage
 

Compressing

 

converted