FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  
0}" becomes "All x' are y", where the Predicate changes for y' to y.] pg073 CHAPTER III. _SYLLOGISMS._ Sec. 1. _Representation of Syllogisms._ We already know how to represent each of the three Propositions of a Syllogism in subscript form. When that is done, all we need, besides, is to write the three expressions in a row, with "+" between the Premisses, and ">" before the Conclusion. [Thus the Syllogism "No x are m'; All m are y. .'. No x are y'." may be represented thus:-- xm'_{0} + m_{1}y'_{0} > xy'_{0} When a Proposition has to be translated from concrete form into subscript form, the Reader will find it convenient, just at first, to translate it into _abstract_ form, and _thence_ into subscript form. But, after a little practice, he will find it quite easy to go straight from concrete form to subscript form.] pg074 Sec. 2. _Formulae for solving Problems in Syllogisms._ When once we have found, by Diagrams, the Conclusion to a given Pair of Premisses, and have represented the Syllogism in subscript form, we have a _Formula_, by which we can at once find, without having to use Diagrams again, the Conclusion to any _other_ Pair of Premisses having the _same_ subscript forms. [Thus, the expression xm_{0} + ym'_{0} > xy_{0} is a Formula, by which we can find the Conclusion to any Pair of Premisses whose subscript forms are xm_{0} + ym'_{0} For example, suppose we had the Pair of Propositions "No gluttons are healthy; No unhealthy men are strong". proposed as Premisses. Taking "men" as our 'Universe', and making m = healthy; x = gluttons; y = strong; we might translate the Pair into abstract form, thus:-- "No x are m; No m' are y". These, in subscript form, would be xm_{0} + m'y_{0} which are identical with those in our _Formula_. Hence we at once know the Conclusion to be xy_{0} that is, in abstract form, "No x are y"; that is, in concrete form, "No gluttons are strong".] I shall now take three different forms of Pairs of Premisses, and work out their Conclusions, once for all, by Diagrams; and thus obtain some
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  



Top keywords:

subscript

 

Premisses

 

Conclusion

 
strong
 
gluttons
 

Diagrams

 

Formula

 
concrete

abstract

 

Syllogism

 

represented

 

Propositions

 

Syllogisms

 
healthy
 

translate

 

suppose


expression

 
proposed
 

obtain

 
identical
 

Conclusions

 
making
 

Universe

 

unhealthy


Taking
 

represent

 

expressions

 

Predicate

 

CHAPTER

 

Representation

 

SYLLOGISMS

 

Proposition


straight

 

Problems

 
solving
 

Formulae

 
practice
 
convenient
 
Reader
 

translated