FREE BOOKS

Author's List




PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  
entific world hastened to adopt it. In this connection Lavoisier says: "We have, therefore, laid aside the expression metallic calx altogether, and have substituted in its place the word oxide. By this it may be seen that the language we have adopted is both copious and expressive. The first or lowest degree of oxygenation in bodies converts them into oxides; a second degree of additional oxygenation constitutes the class of acids of which the specific names drawn from their particular bases terminate in ous, as in the nitrous and the sulphurous acids. The third degree of oxygenation changes these into the species of acids distinguished by the termination in ic, as the nitric and sulphuric acids; and, lastly, we can express a fourth or higher degree of oxygenation by adding the word oxygenated to the name of the acid, as has already been done with oxygenated muriatic acid."(9) This new work when given to the world was not merely an epoch-making book; it was revolutionary. It not only discarded phlogiston altogether, but set forth that metals are simple elements, not compounds of "earth" and "phlogiston." It upheld Cavendish's demonstration that water itself, like air, is a compound of oxygen with another element. In short, it was scientific chemistry, in the modern acceptance of the term. Lavoisier's observations on combustion are at once important and interesting: "Combustion," he says, "... is the decomposition of oxygen produced by a combustible body. The oxygen which forms the base of this gas is absorbed by and enters into combination with the burning body, while the caloric and light are set free. Every combustion necessarily supposes oxygenation; whereas, on the contrary, every oxygenation does not necessarily imply concomitant combustion; because combustion properly so called cannot take place without disengagement of caloric and light. Before combustion can take place, it is necessary that the base of oxygen gas should have greater affinity to the combustible body than it has to caloric; and this elective attraction, to use Bergman's expression, can only take place at a certain degree of temperature which is different for each combustible substance; hence the necessity of giving the first motion or beginning to every combustion by the approach of a heated body. This necessity of heating any body we mean to burn depends upon certain considerations which have not hitherto been attended to by any natural philoso
PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  



Top keywords:

oxygenation

 

combustion

 
degree
 

oxygen

 

caloric

 

combustible

 

Lavoisier

 
oxygenated
 

necessity

 

expression


altogether

 

necessarily

 

phlogiston

 
absorbed
 
burning
 

compound

 

combination

 
enters
 

chemistry

 

important


interesting
 

acceptance

 
observations
 

Combustion

 

modern

 

produced

 

scientific

 

decomposition

 

element

 
giving

motion

 

beginning

 

substance

 
Bergman
 

temperature

 
approach
 
heated
 

hitherto

 

attended

 
natural

philoso

 
considerations
 
heating
 

depends

 

attraction

 

concomitant

 

properly

 
supposes
 
contrary
 

called