FREE BOOKS

Author's List




PREV.   NEXT  
|<   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30  
31   32   33   34   35   36   >>  
s. The layout of the instruction word is shown in Fig. 2. The octal digits 0 and 1 define the instruction code, thus, there are 64 possible instruction codes, not all of which are used. The first bit of octal digit 2 is the indirect address bit. If this bit is a ONE, indirect addressing occurs. The index address, X, is in octal digits 3, 4, and 5. These digits address an index register for memory-type instructions. If these digits are all ZERO, indexing will not take place. In main memory, 511 of the registers can be used as automatic index registers. The instruction base address, Y, is in octal digits 7 through 11. These digits are sufficient to address 32,768 words of memory. Octal digit 6 is reserved for further memory expansion. Space is available in the equipment frame for this expansion, should it prove desirable. In those instructions which do not refer to memory, the memory address digits, Y, and in some cases the index address digits also, are used to specify the variations in any group of instructions. An example of this is in the shift and rotate instructions in which the memory address digits determine the number of shifts. NUMBER SYSTEM The PDP-3 is a "fixed" point machine using binary arithmetic. Negative numbers are represented as the 1's complement of the positive numbers. Bit 0 is the sign bit which is ZERO for positive numbers. Bits 1 to 35 are magnitude bits with bit 1 being the most significant and bit 35 being the least significant. The actual position of the binary point may be arbitrarily assigned to best suit the problem in hand. Two common conventions in the placement of the binary point are: 1. The binary point is to the right of the least significant digit, thus, numbers represent integers. 2. The binary point is to the right of the sign digit, thus the numbers represent a fraction which lies between +-1. The conversion of decimal numbers into the binary system for use by the machine may be performed automatically by subroutines. Similarly the output conversion of binary numbers into decimals is done by subroutine. Operations for floating point numbers are handled by programming. The utility program system provides for automatic insertion of the routines required to perform floating point operations and number base conversion (see Utility Programs). INDEXING In PDP-3, 511 registers of the main magnetic core memory are available for use as automatic index regis
PREV.   NEXT  
|<   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30  
31   32   33   34   35   36   >>  



Top keywords:

digits

 

memory

 
numbers
 
address
 

binary

 

instructions

 
instruction
 

automatic

 

registers

 
significant

conversion
 

represent

 

system

 

expansion

 

indirect

 

positive

 

number

 

floating

 

machine

 

problem


common

 
position
 
complement
 

arbitrarily

 

conventions

 
magnitude
 

actual

 

assigned

 

represented

 
Similarly

required
 
perform
 

routines

 
insertion
 

program

 

operations

 
magnetic
 

INDEXING

 

Utility

 

Programs


utility

 

programming

 
decimal
 

performed

 

integers

 

fraction

 

automatically

 
subroutines
 

Operations

 

handled