FREE BOOKS

Author's List




PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>  
g through any of the coils, is held midway between the magnet cores by the two spiral springs S and T, which are under slight but equal tension. The connections are as follows. The wires from the winding on M are connected directly to the relay terminals F and H, as are also the wires from one winding on N. The other winding on N is connected in series with the battery C, ammeter B, and regulating resistance R. {80} [Illustration: FIG. 38.] When the circuit of the battery C is completed, the coil of N, to which it is connected, is energised, and the armature A is attracted against the stop V. When in this position the tension of the spring S is released, while the tension of the spring T is increased. As soon as the circuit of the battery D is completed by means of the metal line print on the transmitting machine, the current divides at the terminals F and H, a portion flowing through the magnet coil M, and a portion through the remaining winding on N. The current which flows through the winding on N produces a magnetising effect equal to that caused by the other winding on N, but since the two windings are of equal length and resistance, and since the current flowing through the two windings is of equal strength but in opposite directions, the result is to neutralise {81} the magnetising effects produced by each winding, and consequently no magnetism is produced in the cores. The other portion of the current from D flows through the coil M, and it becomes magnetised at the same time that the coil N becomes demagnetised. The armature A is attracted by M against the stop X, and this attraction is assisted by the spring T, which was under increased tension. The conditions of the springs are now reversed, the spring S being under increased tension, while the tension of the spring T is released. As soon as the current from D is broken, the magnetism disappears from M, the neutralising current in N ceases, and N once more becomes magnetised, owing to the current which still flows through one winding from C; the armature is therefore again attracted by N, assisted by the spring S. The current flowing through the two windings of N must be perfectly equal, and the regulating resistance R, and ammeters B and B', are inserted for purposes of adjustment. The current from C must flow in a direction opposite to that which flows from D. [Illustration: FIG. 39. H, H', containers; M, mercury; E, paraffin oil; T, T', termina
PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>  



Top keywords:
current
 

winding

 

spring

 

tension

 

attracted

 
armature
 
resistance
 

battery

 

increased

 

flowing


connected

 
windings
 

portion

 

magnetised

 

assisted

 

produced

 

completed

 

magnetising

 

released

 

opposite


magnetism
 

circuit

 

terminals

 
magnet
 
springs
 
regulating
 
Illustration
 

disappears

 

ceases

 

neutralising


broken

 
conditions
 

demagnetised

 

attraction

 

reversed

 
containers
 

direction

 

mercury

 

termina

 
paraffin

adjustment

 

purposes

 

perfectly

 
inserted
 

ammeters

 

transmitting

 

divides

 

machine

 

series

 
energised