FREE BOOKS

Author's List




PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   >>  
cells of the same size for any resistance between 10 and 1,000,000 ohms, and also, a cell may remain in good working condition for several months, while another will become useless in as many weeks. The ability of a cell to respond to very rapid changes in the illumination to which it is exposed is determined largely upon its inertia, it being taken as a general rule {111} that the higher the resistance of a cell the less the inertia, and _vice versa_, and also, that the higher the resistance the greater the ratio of sensitiveness. Inertia plays an important part in the working of a cell, slightly opposing the drop in resistance when illuminated, and opposing to a [Illustration] much greater degree the return to normal for no-illumination. The effects of inertia or "lag," as it is termed, can readily be seen by reference to Fig. 55. It will be noticed that the current value rapidly increases when the cell is first illuminated, but if after a short time _t_ the light is cut off, the current value, instead of returning at once to normal for no-illumination, only partially rises owing to the interference of the inertia, and some time elapses before the cell returns to its normal condition; the time varying from a few seconds to several minutes, depending upon the characteristics of the cell and the amount of light to which it is exposed. An actual curve is given in Fig. 55a. The inertia or "lag" of a cell produces upon an intermittent current an effect similar to that produced by the capacity [Illustration] of a line, as was noted in Chapter I., preventing the incoming signals from being recorded separately, and distinctly. To obtain the best results in photo-telegraphy, the resistance of a cell should only be decreased to an extent sufficient to pass the current required to operate the recording apparatus, and the illumination should be regulated so that this condition of the cell takes place. The comparative slowness of selenium in responding to {112} any great changes in the illumination offers a serious difficulty to its use in photo-telegraphy, but various methods have been devised whereby the effects of inertia can be counteracted. In the system of De' Bernochi (see Chapter I.) the changes in the illumination are neither very rapid nor very great, and the inertia effects would therefore be very slight; but in any photo-telegraphic system in which a metal line print is used for transmitting, where the source of illum
PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   >>  



Top keywords:

inertia

 
illumination
 

resistance

 

current

 

effects

 

normal

 

condition

 

higher

 

illuminated

 

greater


opposing

 

Chapter

 

telegraphy

 

Illustration

 

exposed

 

system

 

working

 

extent

 

sufficient

 

distinctly


separately

 

telegraphic

 

obtain

 

recorded

 

results

 

slight

 

decreased

 

signals

 

similar

 

produced


effect

 

intermittent

 
produces
 
capacity
 

source

 

preventing

 

incoming

 

transmitting

 

operate

 

counteracted


responding

 

selenium

 

comparative

 

slowness

 

offers

 

devised

 

methods

 

difficulty

 

apparatus

 
regulated