FREE BOOKS

Author's List




PREV.   NEXT  
|<   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78  
79   80   81   82   83   84   85   86   87   88   89   >>  
t, and that only parts of the same amperage are used together on the same lamp. No advantage is obtained by over-running a Nernst lamp, this only shortening its life without increasing the light. Under normal conditions the average life of the burner is about 700 hours. The efficiency of the Nernst lamp is fairly high, being only 1.45 to 1.75 watts per c.p. The light given is remarkably steady, and the lamps are adaptable for all voltages from 100 to 300. In one of the large type of lamps for use on a 235-volt {102} circuit the burner takes 0.5 ampere at 215 volts, and the resistance 0.5 ampere at 20 volts, while one of the smaller lamps for use on the same circuit takes 0.25 ampere at 215 volts and 0.25 ampere at 20 volts for the burner and resistance respectively. The burner and heater are very fragile, and should never be handled except by the porcelain plate to which they are attached. The lamps burn in air and emit a brilliant white light of high actinic power, the intrinsic brilliancy (c.p./square inch) varying from 1000 to 2500, as compared with 1000 to 1200 for ordinary metal filament lamps, and 300 to 500 for carbon filament lamps. The chief advantage of the Nernst lamp from a photographic point of view lies in the fact that it produces abundantly the blue and violet rays which have the greatest chemical effect upon a photographic plate or film. These rays are known as chemical or actinic rays, and are only slightly produced in some types of incandescent electric lamps. Carbon-filament lamps are very poor in this respect. Because a light is visually brilliant it must by no means be assumed that it is the best to use for purposes of photography, and this is a point over which many photographers stumble when using artificial light. Many sources of light, while excellent for illumination, have very low actinic powers, while others may have low illuminating but high {103} actinic powers. A lamp giving a light yellowish in colour has usually low actinic power, while all those lamps giving a soft white light are generally found to be highly actinic. In addition to the actinic value of the source of illumination, the photographic film used must be very carefully chosen, as the chemical inertia of the sensitised film plays an important part in the successful reproduction of the picture, and also, to a certain extent, affects the speed of transmission. The length of exposure, the amount of light admitted to the
PREV.   NEXT  
|<   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78  
79   80   81   82   83   84   85   86   87   88   89   >>  



Top keywords:

actinic

 

ampere

 

burner

 
filament
 

photographic

 

chemical

 

Nernst

 

circuit

 
giving
 

brilliant


illumination

 
powers
 

resistance

 
advantage
 

stumble

 

photography

 

photographers

 
artificial
 

sources

 

illuminating


amperage

 
purposes
 

excellent

 

incandescent

 

electric

 

Carbon

 
slightly
 

produced

 
respect
 

assumed


Because

 

visually

 

reproduction

 

picture

 
successful
 
important
 
extent
 

exposure

 

amount

 

admitted


length

 

transmission

 
affects
 

sensitised

 

inertia

 

colour

 
yellowish
 

generally

 

source

 

carefully