FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  
r is driven off. On removal from the kiln, the dry wood at once takes up moisture from the air, even in the driest weather. At first the absorption is quite rapid; at the end of a week a short piece of pine, 1-1/2 inches thick, has regained two thirds of, and, in a few months, all the moisture which it had when air-dry, 8 to 10 per cent, and also its former dimensions. In thin boards all parts soon attain the same degree of dryness. In heavy timbers the interior remains more moist for many months, and even years, than the exterior parts. Finally an equilibrium is reached, and then only the outer parts change with the weather. With kiln-dried woods all parts are equally dry, and when exposed, the moisture coming from the air must pass through the outer parts, and thus the order is reversed. Ordinary timber requires months before it is at its best. Kiln-dried timber, if properly handled, is prime at once. Dry wood if soaked in water soon regains its original volume, and in the heartwood portion it may even surpass it; that is to say, swell to a larger dimension than it had when green. With the soaking it continues to increase in weight, the cell cavities filling with water, and if left many months all pieces sink. Yet after a year's immersion a piece of oak 2 by 2 inches and only 6 inches long still contains air; _i.e._, it has not taken up all the water it can. By rafting or prolonged immersion, wood loses some of its weight, soluble materials being leached out, but it is not impaired either as fuel or as building material. Immersion, and still more boiling and steaming, reduce the hygroscopicity of wood and therefore also the troublesome "working," or shrinking and swelling. Exposure in dry air to a temperature of 300 degrees Fahrenheit for a short time reduces but does not destroy the hygroscopicity, and with it the tendency to shrink and swell. A piece of red oak which has been subjected to a temperature of over 300 degrees Fahrenheit still swells in hot water and shrinks in a dry kiln. Expansion of Wood It must not be forgotten that timber, in common with every other material, expands as well as contracts. If we extract the moisture from a piece of wood and so cause it to shrink, it may be swelled to its original volume by soaking it in water, but owing to the protection given to most timber in dwelling-houses it is not much affected by wet or damp weather. The shrinkage is
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  



Top keywords:

timber

 

moisture

 

months

 

inches

 

weather

 

original

 

volume

 

temperature

 

degrees

 

Fahrenheit


shrink
 

hygroscopicity

 

material

 
soaking
 
weight
 
immersion
 

Immersion

 
boiling
 

reduce

 

steaming


shrinking

 

driest

 

absorption

 

Exposure

 

working

 

swelling

 

troublesome

 

prolonged

 

soluble

 

rafting


materials
 
building
 
impaired
 

leached

 

destroy

 

swelled

 

protection

 

extract

 
contracts
 
shrinkage

affected

 

dwelling

 
houses
 

expands

 
subjected
 

tendency

 
swells
 

common

 

forgotten

 
shrinks