FREE BOOKS

Author's List




PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  
ts original size by soaking in water, boiling, or steaming. Soaked pieces on drying shrink again as before; boiled and steamed pieces do the same, but to a slightly less degree. Neither hygroscopicity, _i.e._, the capacity of taking up water, nor shrinkage of wood can be overcome by drying at temperatures below 200 degrees Fahrenheit. Higher temperatures, however, reduce these qualities, but nothing short of a coaling heat robs wood of the capacity to shrink and swell. Rapidly dried in a kiln, the wood of oak and other hardwoods "case-harden," that is, the outer part dries and shrinks before the interior has a chance to do the same, and thus forms a firm shell or case of shrunken, commonly checked wood around the interior. This shell does not prevent the interior from drying, but when this drying occurs the interior is commonly checked along the medullary rays, commonly called "honeycombing" or "hollow-horning." In practice this occurrence can be prevented by steaming or sweating the wood in the kiln, and still better by drying the wood in the open air or in a shed before placing in the kiln. Since only the first shrinkage is apt to check the wood, any kind of lumber which has once been air-dried (three to six months for one-inch stuff) may be subjected to kiln heat without any danger from this source. Kept in a bent or warped condition during the first shrinkage, the wood retains the shape to which it has been bent and firmly opposes any attempt at subsequent straightening. Sapwood, as a rule, shrinks more than heartwood of the same weight, but very heavy heartwood may shrink more than lighter sapwood. The amount of water in wood is no criterion of its shrinkage, since in wet wood most of the water is held in the cavities, where it has no effect on the volume. The wood of pine, spruce, cypress, etc., with its very regular structure, dries and shrinks evenly, and suffers much less in seasoning than the wood of broad-leaved (hardwood) trees. Among the latter, oak is the most difficult to dry without injury. Desiccating the air with certain chemicals will cause the wood to dry, but wood thus dried at 80 degrees Fahrenheit will still lose water in the kiln. Wood dried at 120 degrees Fahrenheit loses water still if dried at 200 degrees Fahrenheit, and this again will lose more water if the temperature be raised, so that _absolutely dry wood_ cannot be obtained, and chemical destruction sets in before all the wate
PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  



Top keywords:

drying

 

degrees

 

shrinkage

 

interior

 

Fahrenheit

 

shrink

 

commonly

 

shrinks

 

heartwood

 

checked


temperatures

 

steaming

 

pieces

 
capacity
 

amount

 

criterion

 
condition
 
warped
 

sapwood

 

attempt


weight

 

subsequent

 
cavities
 

straightening

 

opposes

 

firmly

 

retains

 

Sapwood

 

lighter

 

temperature


Desiccating

 

chemicals

 

raised

 

destruction

 

chemical

 

absolutely

 

obtained

 

injury

 

difficult

 

regular


structure

 

cypress

 

spruce

 
effect
 

volume

 

evenly

 

suffers

 

hardwood

 
leaved
 
seasoning