FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
e whole mass of the arch as is commonly assumed. The elastic theory enables one to calculate arches much more quickly than any graphical or guess method yet proposed. Hooped columns are a patented construction which no one has the right to use without license or instructions from M. Considere, who clearly states that his formulas are correct only for rich concrete and for proper percentages of helical and longitudinal reinforcement, which latter must have a small spacing, in order to prevent the deformation of the core between the hoops. With these limitations his formulas are correct. Mr. Godfrey brings up some erratic column tests, and seems to have no confidence in reinforced concrete columns. The majority of column tests, however, show an increase of strength by longitudinal reinforcement. In good concrete the longitudinal reinforcement may not be very effective or very economical, but it safeguards the strength in poorly made concrete, and is absolutely necessary on account of the bending stresses set up in such columns, due to the monolithic character of reinforced concrete work. Mr. Godfrey does not seem to be familiar with the tests made by good authorities on square slabs of reinforced concrete and of cast iron, which latter material is also deficient in tensile strength. These tests prove quite conclusively that the maximum bending moment per linear foot may be calculated by the formulas, (_w_ _l^{2}_)/32 or (_w_ _l^{2}_)/20, according to the degree of fixture of the slabs at the four sides. Inasmuch as fixed ends are rarely obtained in practice, the formula, (_w_ _l^{2}_)/24, is generally adopted, and the writer cannot see any reason to confuse the subject by the introduction of a new method of calculation. WALTER W. CLIFFORD, JUN. AM. SOC. C. E. (by letter).--Some of Mr. Godfrey's criticisms of reinforced concrete practice do not seem to be well taken, and the writer begs to call attention to a few points which seem to be weak. In Fig. 1, the author objects to the use of diagonal bars for the reason that, if the diagonal reinforcement is stressed to the allowable limit, these bars bring the bearing on the concrete, at the point where the diagonal joins the longitudinal reinforcement, above a safe value. The concrete at the point of juncture must give, to some extent, and this would distribute the bearing over a considerable length of rod. In some forms of patented reinforcement an additional safegu
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:

concrete

 

reinforcement

 
longitudinal
 

reinforced

 

formulas

 

diagonal

 

strength

 
Godfrey
 

columns

 

writer


practice

 

bearing

 

bending

 
column
 
method
 

reason

 

correct

 
patented
 

calculation

 

introduction


subject
 

CLIFFORD

 
confuse
 

calculated

 

WALTER

 

formula

 

obtained

 

Inasmuch

 

rarely

 
degree

fixture

 

generally

 

adopted

 
juncture
 

allowable

 
extent
 
additional
 

safegu

 

length

 
considerable

distribute

 
stressed
 
criticisms
 

linear

 

letter

 

author

 

objects

 
attention
 
points
 

prevent